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Autonomous navigation in unknown environment is still a hard problem for small Unmanned Aerial Vehi-
cles (UAVs). Recently, some neural network-based methods are proposed to tackle this problem, however, 
the trained network is opaque, non-intuitive and difficult for people to understand, which limits the 
real-world application. In this paper, a novel explainable deep neural network-based path planner is pro-
posed for quadrotor to fly autonomously in unknown environment. The navigation problem is modelled
as a Markov Decision Process (MDP) and the path planner is trained using Deep Reinforcement Learn-
ing (DRL) method in simulation environment. To get better understanding of the trained model, a novel 
model explanation method is proposed based on the feature attribution. Some easy-to-interpret textual 
and visual explanations are generated to allow end-users to understand what triggered a particular be-
haviour. Moreover, some global analyses are provided for experts to evaluate and improve the trained 
network. Finally, real-world flight tests are conducted to illustrate that our path planner trained in the 
simulation is robust enough to be applied in the real environment directly.

© 2021 Elsevier Masson SAS. All rights reserved.
1. Introduction

In recent years, Unmanned Aerial Vehicles (UAVs) have been 
widely used in various applications, such as persistent surveillance 
[1], good delivery [2], remote sensing [3] and wireless networking 
[4]. To successfully conduct these missions, autonomous naviga-
tion and obstacle avoidance are essential capabilities for UAVs to 
operate intelligently and safety in large unknown complex envi-
ronments [5].

Generally, there are two main solutions for UAV autonomous 
navigation and obstacle avoidance. The first one relies on the op-
timization based on local or global map [6–8]. It is a cascade pro-
cess, which includes mapping, localization planning and control. 
This kind of solution can generate nearly optimal trajectories for 
some optimization objectives such as safety and smoothness. These 
optimization methods can be also used in the cooperative path 
planning problem for multiple UAVs [9]. However, this method al-
ways requires excessive computation and memory to store the map 
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and to run the optimization algorithms. In addition, these tech-
niques suffer from high drift and noise, impacting the quality of 
both localization and the map used for planning [10].

Another category is reactive control, which can generate con-
trol command from perception information directly [11,12]. This 
method requires less computation and memory resources because 
the control signal is obtained using only one forward calculation. 
Moreover, it does not need to maintain the map during flight. This 
property gives UAV the capacity to respond to quick changes in 
the operational environment. This is promising for the real-time 
implementation on-board micro UAVs with size, weight and power 
(SWaP) constraints. However, this kind of method is non-optimal 
because of the lack of global information. Also, the design of this 
reactive policy relies on the expert experiment.

Observing that the UAV reactive navigation can be treated as 
a sequential decision-making problem, more and more researchers 
turn to use learning-based methods. Imanberdiyev et al. [13] de-
veloped a high-level control method for autonomous navigation of 
UAVs using model-based DRL method. He et al. [14] combined 
bio-inspired monocular vision perception method with a DRL-
based local planner to address the micro UAVs navigation prob-
lem. They also proposed learning from demonstration method to 
speed up the training process [15]. Wang et al. [16,17] formulated 
the problem as a Partially Observable Markov Decision Process 
(POMDP) and solved it by an online DRL algorithm. These studies 
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have achieved good results in the simulation environment, but the 
trained model has not been verified in the real environment. Ross 
et al. [18] built an imitation learning (IL)-based controller using a 
small set of human demonstrations and achieved a good perfor-
mance in real forest environments. However, model trained using 
IL method cannot outperform the human demonstration. Compar-
ing to the traditional rule-based reactive controller, the control 
policy trained by DRL can get near optimal actions in the train-
ing environment. Also, relying on the powerful feature extraction 
capacity of Deep Neural Network (DNN), the trained policy can 
extract feature autonomously without human design. This is ex-
pected to provide a better performance.

Except for autonomous navigation problem, DRL method has al-
ready been used on UAV, such as morphing control [19] and task 
allocation [20]. This kind of learning-based method can exceed hu-
man performance games [21,22]. Even in some large-scale systems, 
distributed data-driven intelligent control systems outperform tra-
ditional control methods [23]. However, an enormous problem for 
this kind of learning-based method is that deep learning methods 
turn out to be “black boxes”, which create serious challenges to 
apply those AI based system in real world. To solve this problem, 
researchers start focus on the model explanation. This problem 
falls with the so-called eXplainable AI (XAI) filed [24,25]. There 
are two kind of methods to increase the transparency of AI mod-
els. Using transparency models or using post-hoc XAI techniques. A 
model is considered to be transparent if by itself it is understand-
able, such as linear regression, decision trees, rule-based models, 
etc. This kind of model is usually simple enough to be under-
stood by humans. However, more and more models using deep 
neural network (DNN) to increase the model prediction accuracy. 
The DNN model cannot be easily and directly understood by hu-
mans. Thus, post-hoc XAI techniques are important to handle such 
complex models to provide an inner view of those models. Our re-
search group works through the investigation of XAI problem for 
object classification. Carole et al. invested the model explainability 
for deep object classification from aerospace vehicles using syn-
thetic aperture radar images [26].

DRL models are usually complex to debug for developers as 
they rely on many factors, such as environment, reward function, 
observation and even the algorithms used for training the pol-
icy. Thus, there is an urgent demand for explainable DRL (XDRL). 
Comparing to the burst of XAI research in supervised learning, ex-
plainability for RL is hardly explored [27]. Juozapaitis et al. [28]
explained the RL agent using reward decomposition. Reward de-
composition method is also used in strategic tasks such as Star-
Craft II [29]. Jung Hoon Lee [30] proposed a method to derive a 
secondary comprehensible agent from NN-based RL agent and the 
decisions are made based on simple rules. Beyret et al. [31] pro-
posed an explainable RL for robotic manipulation. Madumal et al.
[32] use causal models to derive causal explanations of the be-
haviour of model-free reinforcement learning agent. A structural 
causal model is learned during the reinforcement learning phase. 
The explanations of behaviour are generated based on the coun-
terfactual analysis of the causal model. Although there have been 
few research works on the explainable RL, no one focuses on the 
UAV navigation problem. Explainability is critical and essential for 
the DRL-based UAV navigation system. On the one hand, it’s use-
ful for non-expert users to know the reason why the controller 
choose to turn right rather than turning left when it the UAV faces 
an obstacle. On the other hand, it supports the network designer 
to know the network decision making progress to improve its per-
formance.

This paper proposes an explainable DRL method to address the 
reactive navigation problem for small UAVs with SWaP constraints. 
The end-to-end navigation deep network is trained in the high-
fidelity simulation environment and applied directly to the real 
2

world environment. To get better understanding of the trained net-
work, both visual and textual explanations to each model output 
are provided as local explanations for non-expert users. Moreover, 
some global explanations are also provided for experts to analyze 
and improve the deep network transparency.

Although there has been considerable works about UAV navi-
gation using DRL method in indoor environment [33,34], outdoor 
environment [35] and even in high dynamic environment [36,37], 
all the proposed trained deep models were evaluated in the sim-
ulation environment only. No real experiments have been con-
ducted. In this paper, the controller is trained in the simulation 
and is applied to the real environment directly. A self-assembled 
UAV platform is built and some real tests with model explanation 
are carried out in outdoor environment.

Our main contributions can be summarized as follows:

• A DNN-based reactive controller for UAV path planning is 
learned using DRL method. The proposed solution can be used 
for small UAVs with limited computation resources and for 
indoor/outdoor scenarios requiring rapid reaction to the en-
vironment changes.

• A novel explanation framework is proposed to explain the 
trained DNN-based controller via both visual and texture ex-
planations.

• The DNN model is trained in simulation and evaluated in the 
real world directly. The real test results show that our network 
has great potential to adapt from an environment to another 
and present more computation efficiency comparing to a con-
ventional searching-based approach.

• We provide the for first time an explainable DRL based UAV 
navigation with real experiments.

2. Preliminaries

2.1. MDP and DRL

In this work, the navigation and obstacle avoidance prob-
lem is formulated using MDP. An MDP is defined by a tuple 
< S, A, R, P , γ >, which consists of a set of states S , a set of ac-
tions A, a reward function R(s, a), a transition function P (s′|s, a), 
and a discount factor γ ∈ (0, 1). In each state s ∈ S , the agent takes 
an action a ∈ A. After executing the action a in the environment, 
the agent receives a reward R(s, a) and reaches a new state s′ , de-
termined from the probability distribution P (s′|s, a).

Solutions for MDPs with finite state and action spaces can be 
obtained through a variety of methods, such as dynamic program-
ming, especially when the transition probabilities are given. How-
ever, in most of the MDPs, the transition probabilities or the re-
ward functions are not available. In this situation, the agent needs 
to interact with the environment to get some inner information to 
solve the MDP and this is done by RL method. The goal of RL is 
to find a policy, π mapping states to actions, that maximizes the 
expected discounted total reward over the agent’s lifetime. This 
concept is formalized by the action value function: Q π (s, a) =
Eπ

[∑T
t=0 γ t R(st ,at)

]
, where Eπ is the expectation over the dis-

tribution of the admissible trajectories (s0, a0, s1, a1, . . . ) obtained 
the policy π starting from s0 = s and a0 = a. The action value func-
tion can be defined by a tabular mapping of discrete inputs and 
outputs. However, this tabular mapping is limiting for continuous 
states or an infinite/large number of states. Different from the tra-
ditional RL algorithms, DRL algorithms uses DNN to approximate 
the action value function, as opposed to tabular functions, to deal 
with complex problems including infinite/large number of states.
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2.2. TD3 algorithm

To get a smooth control command for UAV navigation, an off-
policy model-free DRL method, Twin Delayed DDPG (TD3) [38] is 
adopted for model training. TD3 is the successor of DDPG [39]
method. This method addresses the overestimate problem issue of 
Q-value in DDPG by introducing three critical tricks: clipped dou-
ble Q-Learning, delayed policy update and target policy smoothing 
[40].

Different from DDPG algorithm, TD3 concurrently learns two 
Q-functions, Q φ1 and Q φ2 , by mean square Bellman error min-
imization. Moreover, actions used to form the Q-learning target 
are based on the target policy, μθtarg , but with clipped noise ε ∼
N (0, σ) added on each dimension of the action:

a′(s′) = clip
(
μθtarg(s′) + clip(ε,−c, c),aLow ,aHigh

)
. (1)

This is target policy smoothing which serves as a regularizer for 
the algorithm. It addresses a particular failure mode that can hap-
pen in DDPG: if the Q-function approximator develops an incorrect 
sharp peak for some actions, the policy will quickly exploit that 
peak and then have brittle or incorrect behaviour.

Then, TD3 uses clipped double Q-learning. Both Q-functions use 
a single target, calculated using whichever of the two Q-functions 
gives a smaller target value:

y(r, s′,d) = r + γ (1 − d) min
i=1,2

Q φi,targ (s′,a′(s′)), (2)

and then both are learned by regressing to this target:

L(φi,D) = E
(s,a,r,s′,d)∼D

(
Q φi (s,a) − y(r, s′,d)

)2

, (3)

where i = 1, 2. Lastly, the policy is learned just by maximizing 
Q φ1 :

max
θ

E
s∼D

[
Q φ1(s,μθ (s))

]
. (4)

Different from DDPG, in TD3, the policy is updated less frequently 
than Q-functions. This helps to stabilise the training process.

2.3. Feature attribution

Feature attribution is a common method to analyse trained 
DNN model. Formally, suppose we have a function F : Rn →
[0, 1] that represents a deep neural network and an input x =
(x1, . . . , xn) ∈ Rn . An attribution of the prediction at input x rel-
ative to a baseline input x′ is a vector A F (x, x′) = (a1, . . . , an) ∈ Rn

where ai is the contribution of xi to the prediction F (x). There 
are two different types of feature attribution algorithms: Shapley-
value-based algorithm and gradient-based algorithm. There is a 
fundamental difference between these two algorithm types.

Shapley value [41] is a classic method to distribute the total 
gains of a collaborative game to a coalition of cooperating players. 
It is a fair way to attribute the total gain to the players based on 
their contribution. Formally, considering a coalitional game, there 
is a set N (of n players) and a function v that maps subsets of 
players to the real numbers: v : 2N → R , with v(∅) = 0, where ∅
denotes the empty set. v(S) is the worth of coalition S , describes 
the total expected sum of payoffs the members of S can obtain 
by cooperation. According to the Shapley value, the amount that 
players i contributed to the game is

φi(v) =
∑ |S|!(n − |S| − 1)!

n! (v(S ∪ {i}) − v(S)) (5)

S⊆N\{i}

3

where n is the total number of players and the sum extends over 
all subsets S of N not containing player i. This equation can be 
interpreted as follows: for every coalition S without player i, the 
difference between value function with and without player i is cal-
culated, then, the contribution of player i is equal to the sum of 
the weighted differences, where |S|!(n−|S|−1)!

n! in equation (5) is the 
weight. For ML models, we formulate a game for the prediction at 
each instance. We consider the “total gains” to be the prediction 
value for that instance, and the “players” to be the model features 
of that instance. The collaborative game is all of the model features 
cooperating to form a prediction value. A Shapley-value-based ex-
planation method tries to approximate Shapley values of a given 
prediction by examining the effect of removing a feature under all 
possible combinations of presence or absence of the other features.

Besides the Shapley values, gradients can also be used as the 
feature attribution. A gradient-based explanation method tries to 
explain a given prediction by using the gradient of the output with 
respect to the input features. However, the problem with gradients 
is that they break sensitivity, which is a property that all attribu-
tion methods should satisfy. For example, consider a one variable, 
one ReLU network, f (x) = 1 − ReLU(1 − x). Suppose the baseline 
is x = 0 and the input is x = 2. The output changes from 0 to 
1, but the gradient is zero at x = 2 because f becomes flat after 
x = 1. Thus, the gradient method gives attribution of 0 to x. This 
phenomenon has been reported in [42]. To address this problem, 
Sundararajan et al. [43] proposed Integrated Gradients (IG) algo-
rithm. However, this algorithm requires computing the gradients 
of the model output on a few different inputs (typically 50) be-
tween current feature value and baseline value.

2.4. SHAP and DeepSHAP

According to Section 2.3, Shapley value is a fair way to evalu-
ate the feature attribution of ML model. However, the calculation 
of Shapley value is computationally expensive because the value 
function for all the possible feature coalitions has to be calculated 
according to equation (5). To address this problem, some Shapley 
value estimation methods are proposed such as Shapley regres-
sion values and Shapley sampling values. Lundberg and Lee [44]
studied the relationship between these estimation methods and 
proposed a unified framework for interpreting predictions, named 
SHAP (SHapley Additive exPlanations). In our case, DeepSHAP, a 
model-specific Shapley value approximation method, is used to get 
fast Shapley value estimation.

DeepSHAP [45] is a framework for layer-wise propagation of 
Shapley values that builds upon DeepLIFT [46]. DeepLIFT can be 
thought as a fast approximation method of the Shapley values. If 
model is fully linear, we can get exact Shapley values by summing 
the attributions along all possible paths between input xi and the 
model’s output y. However, most networks have non-linear acti-
vation function applied after the linear part, such as ReLU, tanh 
or sigmoid operations. To deal with the non-linear part, DeepLIFT 
provided both Rescale rule and RevealCancel rule to linearize the 
non-linear part. For any given reference point, DeepLIFT can get a 
linearized model near this point using its rules, then back propa-
gate the feature attribution using the linearized model. In our case, 
because the reference point is fixed, the linearized model only 
needs to be generated once. After the linear model is generated, 
Shapley values can be computed efficiently in a single backward 
pass, which is important for real-time explanation.

2.5. CNN visualization

Understanding the insights of CNN has always been a pain 
point, though CNN can get excellent predictive performance. In 
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Fig. 1. Network architecture of the controller. The network inputs are raw depth image and UAV states such as current speed and relative position to the goal. Features of the 
Depth image is extracted using convolutional neural network. Then, global average pooling layer is used to get the intensity of each visual feature and then feed to the fully 
connected network combined with state features. The outputs are 3 control command includes forward, climb and steering speed.
[47], a deconvolutional network (Deconvnet) approach was pro-
posed to visualize activated pattern in each hidden unit. This 
method can visualize features individually but is limited as it is 
hard to summarize all hidden patterns into one pattern. Simonyan 
et al. [48] visualize partial derivatives of predicted class scores 
w.r.t. pixel intensities, while Guided Back-propagation [49] makes 
modifications to ‘raw’ gradients that result in qualitative improve-
ments. This method can provide fine-grained visualizations.

In [50], the authors proposed Class Activation Map (CAM) us-
ing Global Average Pooling (GAP) layer to summarize the activation 
of the last CNN layer. However, it is only applicable to a particu-
lar CNN architecture where the GAP layer is fed directly into the 
soft-max layer. To address this problem, Grad-CAM [51] method 
combined feature maps and the gradient signal that does not re-
quire any modification in the network architecture. It can be used 
to off-the-shelf CNN architecture. Grad-CAM uses the gradient in-
formation flowing into the last convolutional layer of CNN to assign 
importance values to each neuron for a particular decision of in-
terest.

3. DRL-based UAV navigation

In this section, a DRL-based reactive controller is proposed to 
solve the UAV navigation problem in unknown environment. In 
contrast to conventional simultaneous localization and mapping-
based method, the proposed controller navigates the UAV only 
according to the current sensor data. This kind of controller can 
make quick response in the complex environment. Also, such re-
active controller does not need massive optimization on-board, 
which is beneficial to the small UAVs with limited computation 
resources.

3.1. Problem formulation

Reactive navigation in unknown environment is treated as a se-
quential decision making problem in this paper. At each time step, 
only the current sensor information is used to generate the control 
signal. This means that the action a depends only on the current 
state s. The next state s′ depends on the current state s and the 
action a. This problem can be modelled as a MDP after defining a 
corresponding reward function Ra(s, s′).

Suppose that the UAV takes off from a 3D departure position, 
denoted as (x0, y0, z0) in the Earth-fixed coordinate frame, and 
targets at flying to a destination that is denoted as (xd, yd, zd). The 
observation or state at time t consists of both raw depth image 
and some UAV state features: ot = [ot

depth, ot
state]. The state feature 

includes the relative position to goal and current velocity informa-
tion: ot

state = [dt
xy, dt

z, ξ t , vt
xy, vt

z, φt ], where dt
xy and dt

z denote the 
4

Table 1
Hyperparameters of TD3.

Hyperparameter Value

mini-batch size 128
replay buffer size 50000
discount factor 0.99
learning rate 0.0003
random exploration steps 2000
square deviation of exploration noise 0.3

distance between the UAV’s current position and the destination 
position in x-y plane and z axis, ξ t is the relative angle between 
UAV current first-perspective direction to the destination position, 
vt

xy and vt
z are the UAV current speed and φt is the steering angu-

lar speed. Action a = [vcmd
xy , vcmd

z , φcmd] generated from the policy 
network π(s) consists of 2 linear velocity and 1 angular veloc-
ity. These actions are passed to the low-level controller as velocity 
setpoint command to achieve the goal. The network architecture of 
the navigation network is shown in Fig. 1.

3.2. Training environment and setting

The navigation network is trained in AirSim [52] simulator 
which is built on Unreal Engine. This simulator can provide high 
fidelity environment with ground truth depth image and a low-
level controller to stabilize the UAV. A customized environment is 
created for training, as shown in Fig. 2. The environment is square 
with 200 meters on each side. Some stones were randomly placed 
as obstacles. At the beginning of each episode, the quadrotor takes 
off from the centre of the environment. The goal position is set 
randomly on the circle with a radius of 70 meters and centred 
on the take-off point. The episode terminates when the quadro-
tor reaches the goal position with an accept radius of 2 meters or 
crashed on the obstacles. At each time step, the neural network 
receives the depth image as well as the state information of the 
quadrotor to generate the velocity setpoint in 3D environment. The 
controller is running at 10 Hz and the velocity control is realised 
by the low-level controller provided by AirSim.

To get a smooth velocity command, we use continuous action 
space. An off-policy model-free reinforcement learning algorithm, 
Twin Delayed DDPG (TD3) [38], is adopted for model training. As 
the successor of the DDPG method, TD3 addresses the overestimate 
problem issue of Q-value in DDPG by introducing three critical 
tricks: clipped double Q-Learning, delayed policy update and target 
policy smoothing [40]. Details about the TD3 algorithm are intro-
duced in Section 2.2. TD3 hyper-parameters are tuned based on 
massive training. The final hyper-parameters of the algorithm are 
summarized in Table 1.
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Fig. 2. Customized training environment created using Unreal Engine.

Fig. 3. Mean episode reward and success rate versus the training step curves. The success rate is obtained by evaluating each learned policy over 10 randomly generated 
navigation tasks without action noise. The evaluation is executed every 2k time steps during training.
3.3. Reward function design

Reward function is critical for DRL problem. In general, the 
reward function for navigation can be simple. For example, only 
reward for reaching the goal position as soon as possible and pun-
ishing for collision is considered. However, because of the huge 
state space in the navigation task, especially in 3D environment, 
it is better to introduce continuous reward signal to guide the ex-
ploration and speed up the training process. After a lot of testing, 
a hand-designed reward function is utilized, which consists of a 
continuous goal approaching reward and some penalty terms:

r(st) =
{

10, if success

R goal − P state, otherwise
(6)

where R goal = d(st−1) − d(st) is the goal approaching reward and 
d(st) is the Euclidean distance from current position to goal position 
at time t . P state is the penalty term at current step:

P state = ω1 · Cobs − ω2 · Cact − ω3 · C pos (7)

where

Cobs = dsaf e − dobs(st)

dsaf e − dmin
(8)

is the penalty term to prevent the UAV (quadrotor) from getting 
close to the obstacle. In equation (8), dsaf e and dmin is the safety 
distance and minimum distance allowed to the obstacles. dobs(st)

is the minimum distance to the obstacle at time t . In our training 
process, dsaf e = 5 and dmin = 1, which means we give punishment 
if the quadrotor gets close to the obstacle by 5 meters. When the 
minimum distance to the obstacle is less than 1 meter, it is consid-
ered crashed and this episode terminates. Cact and C pos are penalty 
terms for action, and position error.
5

3.4. Training result

After defining the reward function, the policy network is 
trained for 200k time steps (around 1000 episodes) in the sim-
ulation environment only. To speed up the training process, the 
AirSim simulation clock speed is set to 10, which makes the sim-
ulator can run 10 times faster than real time. The total training 
process took about 8 hours on an PC with Intel i7-8700 processor 
and NVIDIA GeForce GTX1060 GPU. The episode reward and suc-
cess rate are plotted in Fig. 3. From the training results, the policy 
gets about 80% success rate when the algorithm converged.

4. Post-hoc explanation method

In this section, we introduce our model explanation method. 
To keep the network performance, post-hoc explanation approach 
is used, which means the model is explained after training. Fea-
ture attribution is a useful information to generate post-hoc model 
explanation. As introduced in Section 2.3, in this work, SHAP 
value is used to measure the feature attribution rather than gra-
dients. Because SHAP value is provably the only distribution with 
certain desirable properties, which can make better explanation. 
Specifically, in this paper, the SHAP value is calculated using 
DeepSHAP method, which is a fast approximate to the Shapley 
value. DeepSHAP is introduced in Section 2.4.

Different from the traditional image classification task, in our 
case, the input of the network consists in both depth information 
(image) and state information (scalar). Hence, our navigation net-
work consists of a Convolutional Neural Network (CNN) perception 
part to deal with the image information and a Fully Connected 
Network (FCN) part to fuse the image feature with state feature. 
Because of this specific kind of network architecture, our expla-
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Fig. 4. Our proposed SHAP-CAM method. Different from CAM and Grad-CAM, SHAP values is used to provide better feature attribution of each features rather than gradients.
nation consists of visual explanation part for the image input and 
text explanation part for the state features.

4.1. Visual explanation

In our problem, the obstacle information is provided by the 
depth image. A CNN is used to extract the visual feature from the 
raw depth image. Thus, CNN visualization is important for under-
standing the output of the learned policy.

To visualize the CNN perception of our network, a new method 
named SHAP-CAM is proposed, which combining both CAM and 
SHAP values as introduced in section 2.5. Similar to CAM method, 
global average pooling (GAP) layer is reserved to summarize the 
visual feature in the CNN perception network. The output of GAP 
layer is defined as CNN feature. Different from CAM and Grad-CAM, 
in our method, the SHAP value is used to determine the impor-
tance of the CNN feature rather than gradients. Our proposition is 
supported by the fact that SHAP value has some unique proper-
ties comparing to the gradient, such as efficiency. Finally, a coarse 
localization map highlighting the important regions in the image 
is generated by a weighted sum of the last CNN activation map, 
which is similar to Grad-CAM. The difference between CAM, Grad-
CAM and our method is shown in Fig. 4.

4.2. Texture explanation

In addition to the visual explanation, our network also takes 
some UAV states as input. To get a reasonable explanation of the 
model output, both image and state input should be considered. To 
explain the state feature contribution, some texture explanations 
are provided based on the SHAP values.

Our model has 3 continuous action outputs, horizontal speed 
vcmd

xy , vertical speed vcmd
z and steering angular speed φcmd . To get 

the textual action description, each action can be divided into 3 
parts based on the reference action, as shown in Fig. 5. Assum-
ing that the reference action is the centre value of the action 
6

Fig. 5. Action description. Each action is divided into 3 parts. While the prediction 
fall into the central part, we say it is maintain the current state. Otherwise, there 
will be a textual description of each action. The final description will be the combi-
nation of these three individual descriptions.

space, if the predicted action is similar to the reference action, 
it is described to maintain current state. If the output action ei-
ther bigger or smaller than the reference action, a specific text 
is used to describe the action, such as ‘slow down’ or ‘speed up’ 
for the horizontal speed vcmd

xy . The final textual output of the ac-
tion is the combination of these three action textual descriptions. 
For example, the action can be described as ‘slow down, maintain 
the altitude and turn right’. As for the explanation, all features are 
sorted by its attribution to the action output. Then the two most 
important features are selected to explain the model prediction.

Finally, with both visual and textual explanations, every out-
put of our network can be explained to illustrate the reason of 
this decision. This kind of information is useful for non-expert to 
well understand and trust the trained DRL network. Moreover, the 
explanation only take one forward propagation, which can also 
provide real-time explanations during flight.

5. Model explanation

In this section, the model trained in section 3 is explained using 
the explanation method proposed in section 4. The visual explana-
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Fig. 6. Action explanation at 3 different time steps. (a) At t = 0, the action is slow down, keep altitude and turn right. Mainly because the big angle error to the goal position. 
(b) At t = 53, the action is slow down, climb and turn right, mainly because the image features. From the heat map, we can see the quadrotor is close to the stone and the 
CNN detected the edge of the stone. (c) At t = 89, the action is slow down, climb and turn left. This is also cause of the image feature.
tion part shows the attention of the CNN perception network and 
the texture explanation part summaries the contribution of other 
state features. In addition, activation map of the last CNN layer is 
drawn to show the detailed visual feature extracted by the CNN 
part. Finally, to help the expert to diagnose and improve the net-
work, some global explanations are also provided to analyse the 
network based on the evaluation data gathered in 20 continuous 
episodes.

5.1. Reference input

Baselines or references are essential to all explanations [53]. 
Feature attribution method has to generate the contribution of 
each feature based on a reference input. Thus, the choice of the 
reference input is critical for obtaining insightful results [46]. In 
practice, choosing a good reference would rely on domain-specific 
knowledge. For instance, in object recognition task, the reference 
image can be a black image.

In our case, the depth image at the target flight height with-
out any obstacles is chosen as the reference image input. For state 
input, we set the reference input as oref = [dxy = 70, dz = 0, ξ =
0, vxy = 0, vz = 0, φ = 0], which means the UAV only takes off 
from the start point and has no velocity. The reference image is 
7

shown in Fig. 17. Based on this reference input, we can get ref-
erence output from the trained network: vref

xy = 3.71m/s, vref
z =

−0.03m/s, φref = 4.15◦/s.

5.2. Local explanation

Local explanation can be generated for every time step. Three 
specific time steps are chosen to demonstrate the visual and tex-
tual explanation in one of the model evaluation episodes. As 
shown in Fig. 6, at t = 0, the action is ‘slow down, keep altitude 
and turn right’. The explanation shows both ‘slow down’ and ‘turn 
right’ action is caused by the ‘angular error to goal’. This is be-
cause the UAV at t = 0 does not face to the goal position, so the 
UAV need to turn right. At t = 53, the action is ‘slow down, climb 
and turn right’. The explanation shows this is mainly caused by 
the ‘CNN feature’. From the heatmap generated using SHAP-CAM, 
we can see the CNN detected left edge of the stone obstacle. At 
t = 89, the action is ‘slow down, climb and turn left’. This is also 
mainly caused by the ‘CNN feature’.

To find out the meaning of the CNN features, the last CNN layer 
activation maps at both t = 53 and t = 89 are plotted as shown in 
Fig. 7. From the activation map, we can see at t = 53, that CNN fea-
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Fig. 7. Last CNN layer activation map. From this map we can get the meaning of different CNN feature. For example, according to Fig. 6, at t = 53, the action 3 is turn right, 
because CNN_4 and CNN_3 feature. Then, from Fig. 7 (a), CNN_3 and CNN_4 is the right edge of the stone.

Fig. 8. Depth image and the SHAP-CAM at 10 different time steps. The first line is the input depth image. The second to fourth lines are three SHAP-CAM activation maps for 
three network outputs separately.

Fig. 9. State features in the evaluation episode. Blue line is the state feature and orange line is the reference state feature value. (For interpretation of the colours in the 
figure(s), the reader is referred to the web version of this article.)
ture 8 is the left and right edges of the obstacle which contributes 
the most to the slow down action. CNN feature 7 is the obstacle 
and some ground which contributes to the climb. CNN feature 4 
shows the right side edge of the obstacle with some free space 
background, which leads to the turn right action.

5.3. Global explanation

In addition to the local explanation, some global explanations 
are provided. First, one episode from the evaluation process is 
selected and explained. Fig. 8 shows the depth image and the rel-
evant activation map for 3 actions at 10 different time steps. From 
8

Fig. 8, at different time step, the network decision-making for dif-
ferent outputs relies on the different visual patterns. Moreover, the 
control command and state features during the evaluation episode 
is plotted in Fig. 9 and Fig. 10. From dxy in Fig. 9, the UAV flies to-
wards to the goal position and the distance to goal dxy is reducing 
over the trajectory. Finally, at t = 160, the UAV reached the goal 
position.

Then, all the feature attributions are summarized over 20 tra-
jectories, 2858 time steps in total. Fig. 11 shows the SHAP sum-
mary plot that orders the features based on their importance to 
the different actions. From the left plot in Fig. 11, the CNN feature 
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Fig. 10. Network outputs in the evaluation episode. Blue line is the action and orange line is the reference action.

Fig. 11. Feature analysis over 20 trajectories for 3 actions, forward speed vcmd
xy (left), vertical speed vcmd

z (middle) and steering speed φcmd (right). For each action, all the 
features are sorted according to their average attribution. For vcmd

xy , the CNN_8 and CNN_2 feature contribute most, then the current forward speed v_xy. For vcmd
z , the 

distance to goal contributes most. For φcmd, the angle error to goal is the most important feature.
contributes most to action a1 : vcmd
xy . Except for the CNN features, 

the current horizontal velocity vxy and distance to goal dxy are 
the most important features contributing to a1 : vcmd

xy . dxy , vxy and 
vz contribute more to a2 : vcmd

z , the vertical velocity command. 
The angle error ξ is the most important feature contributing to 
a3 : φcmd.

6. Real world flight test

To validate the performance of our reactive navigation con-
troller, some real world outdoor experiments are carried out. 
Specifically, to reduce the gap between real and simulation, the 
DNN model is retrained in the PX4 Simulation In The Loop (SITL) 
environment, which uses the same flight control stack as the real 
flight platform.

6.1. Flight platform

A self-assembled quadrotor platform is used to evaluate the 
trained navigation network, as shown in Fig. 12. The platform is 
built based on S500 quadrotor framework, equipped with a Pix-
hawk flight controller. The flight controller can provide low-level 
attitude and velocity control, as well as the position and velocity 
information. An Intel RealSense D435i camera is mounted facing 
forward in front of the quadrotor to get obstacle information. The 
on-board computer is a NVIDIA Jetson Nano. It is used to run the 
developed deep neural RL network and generate the velocity con-
trol signals. The velocity control signal is sent at 10 Hz to the flight 
controller as velocity setpoint via serial port.

6.2. Model retraining

Because the flight controller used in AirSim training environ-
ment is different from the real platform and to reduce the gap 
between the simulation and real data, the network is retrained in a 
custom Gazebo environment. In this Gazebo environment, the con-
troller is running in the PX4 Simulation in the Loop (SITL) config-
9

Fig. 12. Self-assembled quadrotor platform used for real flight test.

Fig. 13. Gazebo environment for model retraining.

uration, which uses the same flight controller as the real platform 
[54]. Some trees are placed on the ground as obstacles, as shown 
in Fig. 13. In addition, to simplify the experiment, the problem 
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Fig. 14. Training result in gazebo simulation environment. The model is trained from scratch for 20k time steps.

Fig. 15. Evaluation result in the training environment.
is limited to a 2D navigation problem as the flight height of the 
quadrotor is fixed to 5 m. The controller outputs are the setpoints 
of forward velocity and steering velocity. To keep the quadrotor 
safe, the maximum forward velocity is limited to 1 m/s. The net-
work is trained in simulation for 20k time steps. Training results 
are shown in Fig. 14. The success rate is about 95% after training.

6.3. Evaluation in simulation

After training, the trained model is evaluated in the training 
environment firstly. As shown in Fig. 15 (a), the trained model is 
evaluated for 50 episodes. At the beginning of each episode, the 
quadrotor takes off from the origin point and flies to the goal po-
sition which is distributed on the circle with radius of 50 meters. 
In 50 evaluation episodes, the UAV reaches goal position for 46 
episodes, which is 92% success rate. The crash point is noted by 
red cross. To demonstrate the state during evaluation, one of the 
trajectories is selected to do some detailed analysis. The selected 
trajectory is highlighted in red as shown in Fig. 15a. From the 
flight path, the quadrotor made an obvious evasive maneuvering 
to steer away from the obstacle. The forward speed and steering 
speed of the quadrotor are shown in Fig. 15 (b). When the UAV 
facing the obstacle at time step 75, our network reduced the speed 
and turned right to avoid this obstacle.

6.4. Evaluation in the real world

After evaluation in simulation, the trained DRL network is di-
rectly deployed to the real flight platform without modification. 
The real world test environment is shown in Fig. 16a. A large tree 
is proposed as obstacle. The goal position is set behind the tree 
10
and 35 meters away from the start point. Five real tests were con-
ducted at this environment from two different start position and 
four of them were success. One of the flight paths is shown in 
Fig. 16b. From the flight path, the trained reactive controller can 
navigate the quadrotor to avoid the obstacle and reach the goal 
position finally.

The proposed explanation method is also evaluated in the real 
environment. The reference image is shown in Fig. 17. Actions pre-
dicted at t = 10 s, t = 11 s and t = 12 s are selected separately. As 
shown in Fig. 19, the forward speed setpoint for all actions is 1m/s
which is same as the reference input. So, only the steering speed 
is explained. As shown in Fig. 19 (a), at t = 10 s, the network out-
put is ‘turn left’. The explanation is that it is mainly because of 
the ‘CNN features’. From the heatmap, we can find that the CNN 
part detected the edge of the tree. In the next state, at t = 11 s, as 
shown in Fig. 19 (b), the UAV has turned a little bit left from the 
depth image comparing to t = 10 s, the output for steering veloc-
ity decrease from −23.3 deg/s to −10.2 deg/s. This is also mainly 
caused by the ‘CNN feature’. At t = 12 s, the obstacle totally move 
out from the field of view as shown in Fig. 19 (c), the actions be-
comes ‘turn right’. The explanation is that this is mainly caused by 
the ‘angle error’ to goal position. The network cannot detect the 
obstacle from the depth image, thus, the network wants to control 
the quadrotor to face to the goal position.

Fig. 18 shows the forward speed and steering speed during 
flight. From the experiment, as we expected, some little non-
smooth output appears when avoiding the obstacles. This is due 
to the very challenging problem we are tackling in this paper. The 
DRL network is trained in the simulation environment only and ap-
plied directly to real world conditions. Another reason is the nature 
of reactive flight with limited camera field of View (FoV). When 
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Fig. 16. Real world flight test.

Fig. 17. Reference depth image. In our case, the depth image at the target flight height without any obstacles is chosen as the reference image input.
the obstacle disappeared from the FoV, the network will control 
the quadrotor to face the target direction again. Our developed DRL 
controller was able to face these challenges and offered a unique 
solution as the non-smooth output of the network is within toler-
ance and the quadrotor successfully navigated to the goal position. 
From the evaluation result shown in Fig. 15b, such non-smooth 
output also exists in the simulation, but the amplitude is signifi-
cantly smaller in the simulation than the real world test. Although 
the real environment is different from the training environment, 
the trained network still works, which shows our neural network 
based reactive controller has some ability to be applied in different 
environments.

In addition, the proposed reactive controller is compared with 
a traditional obstacle avoidance algorithm. PX4 avoidance project 
[55] is chosen as the opponent controller. PX4 avoidance project 
provides ROS nodes for depth sensor fusion and obstacle avoid-
ance, which is based on the 3DVFH+. The local planner of PX4 
avoidance can generate waypoint in a vector field histogram in-
cluding some history information. Flight test result shows that 
both algorithms can navigate the quadrotor to the final position. 
However, using the same hardware, the PX4 avoidance system can 
only run at 10 Hz. In contrast, our deep neural network-based 
reactive controller can run at 60 Hz. This shows the computa-
tional advantage of our reactive controller and it is very impor-
tant for lightweight UAVs with limited on-board computation re-
sources.
11
Fig. 18. Forward speed (up) and steering speed (down) during the real flight test.

7. Conclusion

In this paper, the UAV autonomous path planning problem is 
addressed with DRL technique. Different from other works, the 
proposed deep network trained in simulation only is evaluated in 
both simulation and real world environment. Moreover, this paper 
focused on proposing a new DRL scheme for model explainabil-
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Fig. 19. Real world action explanation at 3 different time steps. (a) At t = 10 s, the first action is keep speed, because the reference speed and network output for forward 
speed are both 1 m/s. The steering velocity speed is −23.3 deg/s, which means turn left quickly. This action is generated because of C N N6 and C N N1 feature. (b) At t = 11 s, 
the UAV already turned left, the steering output reduced from −23.3 to −10.2 deg/s. (c) At t = 12 s, the obstacle went out of the camera view. The action becomes turn 
right. This is mainly caused of angle error to goal and C N N4 feature.
ity rather than treating the trained model as a black box. A new 
saliency map generation method is proposed which combines both 
CAM and SHAP values. Both visual and textual action explanations 
can be generated for non-expert users. This is important for the 
user to get more trust on the application of DRL-based model in 
the real world environments.

In the future, the model will be fine-trained and improved 
based on the explanation. Feature attribution method can provide 
some explanation of the deep neural network, however, it is still 
pretty shallow. We will look at other methods to make better ex-
planations for the trained network.
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