
Aerospace Science and Technology 118 (2021) 107052

Contents lists available at ScienceDirect

Aerospace Science and Technology

www.elsevier.com/locate/aescte

Explainable Deep Reinforcement Learning for UAV autonomous

path planning ✩

Lei He a,∗, Nabil Aouf b, Bifeng Song a

a School of Aeronautics, Northwestern Polytechnical University, Xi’an, 710072, China
b Department of Electrical and Electronic Engineering, City, University of London, London EC1V 0HB, United Kingdom

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 April 2021
Received in revised form 4 July 2021
Accepted 17 August 2021
Available online 25 August 2021
Communicated by Euan Mcgookin

Keywords:
Unmanned Aerial Vehicles (UAVs)
Autonomous navigation
Deep Reinforcement Learning (DRL)
Explainable AI

Autonomous navigation in unknown environment is still a hard problem for small Unmanned Aerial Vehi-
cles (UAVs). Recently, some neural network-based methods are proposed to tackle this problem, however,
the trained network is opaque, non-intuitive and difficult for people to understand, which limits the
real-world application. In this paper, a novel explainable deep neural network-based path planner is pro-
posed for quadrotor to fly autonomously in unknown environment. The navigation problem is modelled
as a Markov Decision Process (MDP) and the path planner is trained using Deep Reinforcement Learn-
ing (DRL) method in simulation environment. To get better understanding of the trained model, a novel
model explanation method is proposed based on the feature attribution. Some easy-to-interpret textual
and visual explanations are generated to allow end-users to understand what triggered a particular be-
haviour. Moreover, some global analyses are provided for experts to evaluate and improve the trained
network. Finally, real-world flight tests are conducted to illustrate that our path planner trained in the
simulation is robust enough to be applied in the real environment directly.

© 2021 Elsevier Masson SAS. All rights reserved.
1. Introduction

In recent years, Unmanned Aerial Vehicles (UAVs) have been
widely used in various applications, such as persistent surveillance
[1], good delivery [2], remote sensing [3] and wireless networking
[4]. To successfully conduct these missions, autonomous naviga-
tion and obstacle avoidance are essential capabilities for UAVs to
operate intelligently and safety in large unknown complex envi-
ronments [5].

Generally, there are two main solutions for UAV autonomous
navigation and obstacle avoidance. The first one relies on the op-
timization based on local or global map [6–8]. It is a cascade pro-
cess, which includes mapping, localization planning and control.
This kind of solution can generate nearly optimal trajectories for
some optimization objectives such as safety and smoothness. These
optimization methods can be also used in the cooperative path
planning problem for multiple UAVs [9]. However, this method al-
ways requires excessive computation and memory to store the map

✩ This work was supported by China Scholarship Council No. 201806290175
and Key R & D project of Shaanxi Province under Grant 2020ZDLGY06-05,
2021ZDLGY09-10; City University of London, GB, Postdoc Position.

* Corresponding author.
E-mail addresses: heleidsn@mail.nwpu.edu.cn (L. He), nabil.aouf@city.ac.uk

(N. Aouf), bfsong@nwpu.edu.cn (B. Song).
https://doi.org/10.1016/j.ast.2021.107052
1270-9638/© 2021 Elsevier Masson SAS. All rights reserved.
and to run the optimization algorithms. In addition, these tech-
niques suffer from high drift and noise, impacting the quality of
both localization and the map used for planning [10].

Another category is reactive control, which can generate con-
trol command from perception information directly [11,12]. This
method requires less computation and memory resources because
the control signal is obtained using only one forward calculation.
Moreover, it does not need to maintain the map during flight. This
property gives UAV the capacity to respond to quick changes in
the operational environment. This is promising for the real-time
implementation on-board micro UAVs with size, weight and power
(SWaP) constraints. However, this kind of method is non-optimal
because of the lack of global information. Also, the design of this
reactive policy relies on the expert experiment.

Observing that the UAV reactive navigation can be treated as
a sequential decision-making problem, more and more researchers
turn to use learning-based methods. Imanberdiyev et al. [13] de-
veloped a high-level control method for autonomous navigation of
UAVs using model-based DRL method. He et al. [14] combined
bio-inspired monocular vision perception method with a DRL-
based local planner to address the micro UAVs navigation prob-
lem. They also proposed learning from demonstration method to
speed up the training process [15]. Wang et al. [16,17] formulated
the problem as a Partially Observable Markov Decision Process
(POMDP) and solved it by an online DRL algorithm. These studies

https://doi.org/10.1016/j.ast.2021.107052
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/aescte
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ast.2021.107052&domain=pdf
mailto:heleidsn@mail.nwpu.edu.cn
mailto:nabil.aouf@city.ac.uk
mailto:bfsong@nwpu.edu.cn
https://doi.org/10.1016/j.ast.2021.107052

L. He, N. Aouf and B. Song Aerospace Science and Technology 118 (2021) 107052
have achieved good results in the simulation environment, but the
trained model has not been verified in the real environment. Ross
et al. [18] built an imitation learning (IL)-based controller using a
small set of human demonstrations and achieved a good perfor-
mance in real forest environments. However, model trained using
IL method cannot outperform the human demonstration. Compar-
ing to the traditional rule-based reactive controller, the control
policy trained by DRL can get near optimal actions in the train-
ing environment. Also, relying on the powerful feature extraction
capacity of Deep Neural Network (DNN), the trained policy can
extract feature autonomously without human design. This is ex-
pected to provide a better performance.

Except for autonomous navigation problem, DRL method has al-
ready been used on UAV, such as morphing control [19] and task
allocation [20]. This kind of learning-based method can exceed hu-
man performance games [21,22]. Even in some large-scale systems,
distributed data-driven intelligent control systems outperform tra-
ditional control methods [23]. However, an enormous problem for
this kind of learning-based method is that deep learning methods
turn out to be “black boxes”, which create serious challenges to
apply those AI based system in real world. To solve this problem,
researchers start focus on the model explanation. This problem
falls with the so-called eXplainable AI (XAI) filed [24,25]. There
are two kind of methods to increase the transparency of AI mod-
els. Using transparency models or using post-hoc XAI techniques. A
model is considered to be transparent if by itself it is understand-
able, such as linear regression, decision trees, rule-based models,
etc. This kind of model is usually simple enough to be under-
stood by humans. However, more and more models using deep
neural network (DNN) to increase the model prediction accuracy.
The DNN model cannot be easily and directly understood by hu-
mans. Thus, post-hoc XAI techniques are important to handle such
complex models to provide an inner view of those models. Our re-
search group works through the investigation of XAI problem for
object classification. Carole et al. invested the model explainability
for deep object classification from aerospace vehicles using syn-
thetic aperture radar images [26].

DRL models are usually complex to debug for developers as
they rely on many factors, such as environment, reward function,
observation and even the algorithms used for training the pol-
icy. Thus, there is an urgent demand for explainable DRL (XDRL).
Comparing to the burst of XAI research in supervised learning, ex-
plainability for RL is hardly explored [27]. Juozapaitis et al. [28]
explained the RL agent using reward decomposition. Reward de-
composition method is also used in strategic tasks such as Star-
Craft II [29]. Jung Hoon Lee [30] proposed a method to derive a
secondary comprehensible agent from NN-based RL agent and the
decisions are made based on simple rules. Beyret et al. [31] pro-
posed an explainable RL for robotic manipulation. Madumal et al.
[32] use causal models to derive causal explanations of the be-
haviour of model-free reinforcement learning agent. A structural
causal model is learned during the reinforcement learning phase.
The explanations of behaviour are generated based on the coun-
terfactual analysis of the causal model. Although there have been
few research works on the explainable RL, no one focuses on the
UAV navigation problem. Explainability is critical and essential for
the DRL-based UAV navigation system. On the one hand, it’s use-
ful for non-expert users to know the reason why the controller
choose to turn right rather than turning left when it the UAV faces
an obstacle. On the other hand, it supports the network designer
to know the network decision making progress to improve its per-
formance.

This paper proposes an explainable DRL method to address the
reactive navigation problem for small UAVs with SWaP constraints.
The end-to-end navigation deep network is trained in the high-
fidelity simulation environment and applied directly to the real
2

world environment. To get better understanding of the trained net-
work, both visual and textual explanations to each model output
are provided as local explanations for non-expert users. Moreover,
some global explanations are also provided for experts to analyze
and improve the deep network transparency.

Although there has been considerable works about UAV navi-
gation using DRL method in indoor environment [33,34], outdoor
environment [35] and even in high dynamic environment [36,37],
all the proposed trained deep models were evaluated in the sim-
ulation environment only. No real experiments have been con-
ducted. In this paper, the controller is trained in the simulation
and is applied to the real environment directly. A self-assembled
UAV platform is built and some real tests with model explanation
are carried out in outdoor environment.

Our main contributions can be summarized as follows:

• A DNN-based reactive controller for UAV path planning is
learned using DRL method. The proposed solution can be used
for small UAVs with limited computation resources and for
indoor/outdoor scenarios requiring rapid reaction to the en-
vironment changes.

• A novel explanation framework is proposed to explain the
trained DNN-based controller via both visual and texture ex-
planations.

• The DNN model is trained in simulation and evaluated in the
real world directly. The real test results show that our network
has great potential to adapt from an environment to another
and present more computation efficiency comparing to a con-
ventional searching-based approach.

• We provide the for first time an explainable DRL based UAV
navigation with real experiments.

2. Preliminaries

2.1. MDP and DRL

In this work, the navigation and obstacle avoidance prob-
lem is formulated using MDP. An MDP is defined by a tuple
< S, A, R, P , γ >, which consists of a set of states S , a set of ac-
tions A, a reward function R(s, a), a transition function P (s′|s, a),
and a discount factor γ ∈ (0, 1). In each state s ∈ S , the agent takes
an action a ∈ A. After executing the action a in the environment,
the agent receives a reward R(s, a) and reaches a new state s′ , de-
termined from the probability distribution P (s′|s, a).

Solutions for MDPs with finite state and action spaces can be
obtained through a variety of methods, such as dynamic program-
ming, especially when the transition probabilities are given. How-
ever, in most of the MDPs, the transition probabilities or the re-
ward functions are not available. In this situation, the agent needs
to interact with the environment to get some inner information to
solve the MDP and this is done by RL method. The goal of RL is
to find a policy, π mapping states to actions, that maximizes the
expected discounted total reward over the agent’s lifetime. This
concept is formalized by the action value function: Q π (s, a) =
Eπ

[∑T
t=0 γ t R(st ,at)

]
, where Eπ is the expectation over the dis-

tribution of the admissible trajectories (s0, a0, s1, a1, . . .) obtained
the policy π starting from s0 = s and a0 = a. The action value func-
tion can be defined by a tabular mapping of discrete inputs and
outputs. However, this tabular mapping is limiting for continuous
states or an infinite/large number of states. Different from the tra-
ditional RL algorithms, DRL algorithms uses DNN to approximate
the action value function, as opposed to tabular functions, to deal
with complex problems including infinite/large number of states.

L. He, N. Aouf and B. Song Aerospace Science and Technology 118 (2021) 107052
2.2. TD3 algorithm

To get a smooth control command for UAV navigation, an off-
policy model-free DRL method, Twin Delayed DDPG (TD3) [38] is
adopted for model training. TD3 is the successor of DDPG [39]
method. This method addresses the overestimate problem issue of
Q-value in DDPG by introducing three critical tricks: clipped dou-
ble Q-Learning, delayed policy update and target policy smoothing
[40].

Different from DDPG algorithm, TD3 concurrently learns two
Q-functions, Q φ1 and Q φ2 , by mean square Bellman error min-
imization. Moreover, actions used to form the Q-learning target
are based on the target policy, μθtarg , but with clipped noise ε ∼
N (0, σ) added on each dimension of the action:

a′(s′) = clip
(
μθtarg(s′) + clip(ε,−c, c),aLow ,aHigh

)
. (1)

This is target policy smoothing which serves as a regularizer for
the algorithm. It addresses a particular failure mode that can hap-
pen in DDPG: if the Q-function approximator develops an incorrect
sharp peak for some actions, the policy will quickly exploit that
peak and then have brittle or incorrect behaviour.

Then, TD3 uses clipped double Q-learning. Both Q-functions use
a single target, calculated using whichever of the two Q-functions
gives a smaller target value:

y(r, s′,d) = r + γ (1 − d) min
i=1,2

Q φi,targ (s′,a′(s′)), (2)

and then both are learned by regressing to this target:

L(φi,D) = E
(s,a,r,s′,d)∼D

(
Q φi (s,a) − y(r, s′,d)

)2

, (3)

where i = 1, 2. Lastly, the policy is learned just by maximizing
Q φ1 :

max
θ

E
s∼D

[
Q φ1(s,μθ (s))

]
. (4)

Different from DDPG, in TD3, the policy is updated less frequently
than Q-functions. This helps to stabilise the training process.

2.3. Feature attribution

Feature attribution is a common method to analyse trained
DNN model. Formally, suppose we have a function F : Rn →
[0, 1] that represents a deep neural network and an input x =
(x1, . . . , xn) ∈ Rn . An attribution of the prediction at input x rel-
ative to a baseline input x′ is a vector A F (x, x′) = (a1, . . . , an) ∈ Rn

where ai is the contribution of xi to the prediction F (x). There
are two different types of feature attribution algorithms: Shapley-
value-based algorithm and gradient-based algorithm. There is a
fundamental difference between these two algorithm types.

Shapley value [41] is a classic method to distribute the total
gains of a collaborative game to a coalition of cooperating players.
It is a fair way to attribute the total gain to the players based on
their contribution. Formally, considering a coalitional game, there
is a set N (of n players) and a function v that maps subsets of
players to the real numbers: v : 2N → R , with v(∅) = 0, where ∅
denotes the empty set. v(S) is the worth of coalition S , describes
the total expected sum of payoffs the members of S can obtain
by cooperation. According to the Shapley value, the amount that
players i contributed to the game is

φi(v) =
∑ |S|!(n − |S| − 1)!

n! (v(S ∪ {i}) − v(S)) (5)

S⊆N\{i}

3

where n is the total number of players and the sum extends over
all subsets S of N not containing player i. This equation can be
interpreted as follows: for every coalition S without player i, the
difference between value function with and without player i is cal-
culated, then, the contribution of player i is equal to the sum of
the weighted differences, where |S|!(n−|S|−1)!

n! in equation (5) is the
weight. For ML models, we formulate a game for the prediction at
each instance. We consider the “total gains” to be the prediction
value for that instance, and the “players” to be the model features
of that instance. The collaborative game is all of the model features
cooperating to form a prediction value. A Shapley-value-based ex-
planation method tries to approximate Shapley values of a given
prediction by examining the effect of removing a feature under all
possible combinations of presence or absence of the other features.

Besides the Shapley values, gradients can also be used as the
feature attribution. A gradient-based explanation method tries to
explain a given prediction by using the gradient of the output with
respect to the input features. However, the problem with gradients
is that they break sensitivity, which is a property that all attribu-
tion methods should satisfy. For example, consider a one variable,
one ReLU network, f (x) = 1 − ReLU(1 − x). Suppose the baseline
is x = 0 and the input is x = 2. The output changes from 0 to
1, but the gradient is zero at x = 2 because f becomes flat after
x = 1. Thus, the gradient method gives attribution of 0 to x. This
phenomenon has been reported in [42]. To address this problem,
Sundararajan et al. [43] proposed Integrated Gradients (IG) algo-
rithm. However, this algorithm requires computing the gradients
of the model output on a few different inputs (typically 50) be-
tween current feature value and baseline value.

2.4. SHAP and DeepSHAP

According to Section 2.3, Shapley value is a fair way to evalu-
ate the feature attribution of ML model. However, the calculation
of Shapley value is computationally expensive because the value
function for all the possible feature coalitions has to be calculated
according to equation (5). To address this problem, some Shapley
value estimation methods are proposed such as Shapley regres-
sion values and Shapley sampling values. Lundberg and Lee [44]
studied the relationship between these estimation methods and
proposed a unified framework for interpreting predictions, named
SHAP (SHapley Additive exPlanations). In our case, DeepSHAP, a
model-specific Shapley value approximation method, is used to get
fast Shapley value estimation.

DeepSHAP [45] is a framework for layer-wise propagation of
Shapley values that builds upon DeepLIFT [46]. DeepLIFT can be
thought as a fast approximation method of the Shapley values. If
model is fully linear, we can get exact Shapley values by summing
the attributions along all possible paths between input xi and the
model’s output y. However, most networks have non-linear acti-
vation function applied after the linear part, such as ReLU, tanh
or sigmoid operations. To deal with the non-linear part, DeepLIFT
provided both Rescale rule and RevealCancel rule to linearize the
non-linear part. For any given reference point, DeepLIFT can get a
linearized model near this point using its rules, then back propa-
gate the feature attribution using the linearized model. In our case,
because the reference point is fixed, the linearized model only
needs to be generated once. After the linear model is generated,
Shapley values can be computed efficiently in a single backward
pass, which is important for real-time explanation.

2.5. CNN visualization

Understanding the insights of CNN has always been a pain
point, though CNN can get excellent predictive performance. In

L. He, N. Aouf and B. Song Aerospace Science and Technology 118 (2021) 107052

Fig. 1. Network architecture of the controller. The network inputs are raw depth image and UAV states such as current speed and relative position to the goal. Features of the
Depth image is extracted using convolutional neural network. Then, global average pooling layer is used to get the intensity of each visual feature and then feed to the fully
connected network combined with state features. The outputs are 3 control command includes forward, climb and steering speed.
[47], a deconvolutional network (Deconvnet) approach was pro-
posed to visualize activated pattern in each hidden unit. This
method can visualize features individually but is limited as it is
hard to summarize all hidden patterns into one pattern. Simonyan
et al. [48] visualize partial derivatives of predicted class scores
w.r.t. pixel intensities, while Guided Back-propagation [49] makes
modifications to ‘raw’ gradients that result in qualitative improve-
ments. This method can provide fine-grained visualizations.

In [50], the authors proposed Class Activation Map (CAM) us-
ing Global Average Pooling (GAP) layer to summarize the activation
of the last CNN layer. However, it is only applicable to a particu-
lar CNN architecture where the GAP layer is fed directly into the
soft-max layer. To address this problem, Grad-CAM [51] method
combined feature maps and the gradient signal that does not re-
quire any modification in the network architecture. It can be used
to off-the-shelf CNN architecture. Grad-CAM uses the gradient in-
formation flowing into the last convolutional layer of CNN to assign
importance values to each neuron for a particular decision of in-
terest.

3. DRL-based UAV navigation

In this section, a DRL-based reactive controller is proposed to
solve the UAV navigation problem in unknown environment. In
contrast to conventional simultaneous localization and mapping-
based method, the proposed controller navigates the UAV only
according to the current sensor data. This kind of controller can
make quick response in the complex environment. Also, such re-
active controller does not need massive optimization on-board,
which is beneficial to the small UAVs with limited computation
resources.

3.1. Problem formulation

Reactive navigation in unknown environment is treated as a se-
quential decision making problem in this paper. At each time step,
only the current sensor information is used to generate the control
signal. This means that the action a depends only on the current
state s. The next state s′ depends on the current state s and the
action a. This problem can be modelled as a MDP after defining a
corresponding reward function Ra(s, s′).

Suppose that the UAV takes off from a 3D departure position,
denoted as (x0, y0, z0) in the Earth-fixed coordinate frame, and
targets at flying to a destination that is denoted as (xd, yd, zd). The
observation or state at time t consists of both raw depth image
and some UAV state features: ot = [ot

depth, ot
state]. The state feature

includes the relative position to goal and current velocity informa-
tion: ot

state = [dt
xy, dt

z, ξ t , vt
xy, vt

z, φt], where dt
xy and dt

z denote the
4

Table 1
Hyperparameters of TD3.

Hyperparameter Value

mini-batch size 128
replay buffer size 50000
discount factor 0.99
learning rate 0.0003
random exploration steps 2000
square deviation of exploration noise 0.3

distance between the UAV’s current position and the destination
position in x-y plane and z axis, ξ t is the relative angle between
UAV current first-perspective direction to the destination position,
vt

xy and vt
z are the UAV current speed and φt is the steering angu-

lar speed. Action a = [vcmd
xy , vcmd

z , φcmd] generated from the policy
network π(s) consists of 2 linear velocity and 1 angular veloc-
ity. These actions are passed to the low-level controller as velocity
setpoint command to achieve the goal. The network architecture of
the navigation network is shown in Fig. 1.

3.2. Training environment and setting

The navigation network is trained in AirSim [52] simulator
which is built on Unreal Engine. This simulator can provide high
fidelity environment with ground truth depth image and a low-
level controller to stabilize the UAV. A customized environment is
created for training, as shown in Fig. 2. The environment is square
with 200 meters on each side. Some stones were randomly placed
as obstacles. At the beginning of each episode, the quadrotor takes
off from the centre of the environment. The goal position is set
randomly on the circle with a radius of 70 meters and centred
on the take-off point. The episode terminates when the quadro-
tor reaches the goal position with an accept radius of 2 meters or
crashed on the obstacles. At each time step, the neural network
receives the depth image as well as the state information of the
quadrotor to generate the velocity setpoint in 3D environment. The
controller is running at 10 Hz and the velocity control is realised
by the low-level controller provided by AirSim.

To get a smooth velocity command, we use continuous action
space. An off-policy model-free reinforcement learning algorithm,
Twin Delayed DDPG (TD3) [38], is adopted for model training. As
the successor of the DDPG method, TD3 addresses the overestimate
problem issue of Q-value in DDPG by introducing three critical
tricks: clipped double Q-Learning, delayed policy update and target
policy smoothing [40]. Details about the TD3 algorithm are intro-
duced in Section 2.2. TD3 hyper-parameters are tuned based on
massive training. The final hyper-parameters of the algorithm are
summarized in Table 1.

L. He, N. Aouf and B. Song Aerospace Science and Technology 118 (2021) 107052

Fig. 2. Customized training environment created using Unreal Engine.

Fig. 3. Mean episode reward and success rate versus the training step curves. The success rate is obtained by evaluating each learned policy over 10 randomly generated
navigation tasks without action noise. The evaluation is executed every 2k time steps during training.
3.3. Reward function design

Reward function is critical for DRL problem. In general, the
reward function for navigation can be simple. For example, only
reward for reaching the goal position as soon as possible and pun-
ishing for collision is considered. However, because of the huge
state space in the navigation task, especially in 3D environment,
it is better to introduce continuous reward signal to guide the ex-
ploration and speed up the training process. After a lot of testing,
a hand-designed reward function is utilized, which consists of a
continuous goal approaching reward and some penalty terms:

r(st) =
{

10, if success

R goal − P state, otherwise
(6)

where R goal = d(st−1) − d(st) is the goal approaching reward and
d(st) is the Euclidean distance from current position to goal position
at time t . P state is the penalty term at current step:

P state = ω1 · Cobs − ω2 · Cact − ω3 · C pos (7)

where

Cobs = dsaf e − dobs(st)

dsaf e − dmin
(8)

is the penalty term to prevent the UAV (quadrotor) from getting
close to the obstacle. In equation (8), dsaf e and dmin is the safety
distance and minimum distance allowed to the obstacles. dobs(st)

is the minimum distance to the obstacle at time t . In our training
process, dsaf e = 5 and dmin = 1, which means we give punishment
if the quadrotor gets close to the obstacle by 5 meters. When the
minimum distance to the obstacle is less than 1 meter, it is consid-
ered crashed and this episode terminates. Cact and C pos are penalty
terms for action, and position error.
5

3.4. Training result

After defining the reward function, the policy network is
trained for 200k time steps (around 1000 episodes) in the sim-
ulation environment only. To speed up the training process, the
AirSim simulation clock speed is set to 10, which makes the sim-
ulator can run 10 times faster than real time. The total training
process took about 8 hours on an PC with Intel i7-8700 processor
and NVIDIA GeForce GTX1060 GPU. The episode reward and suc-
cess rate are plotted in Fig. 3. From the training results, the policy
gets about 80% success rate when the algorithm converged.

4. Post-hoc explanation method

In this section, we introduce our model explanation method.
To keep the network performance, post-hoc explanation approach
is used, which means the model is explained after training. Fea-
ture attribution is a useful information to generate post-hoc model
explanation. As introduced in Section 2.3, in this work, SHAP
value is used to measure the feature attribution rather than gra-
dients. Because SHAP value is provably the only distribution with
certain desirable properties, which can make better explanation.
Specifically, in this paper, the SHAP value is calculated using
DeepSHAP method, which is a fast approximate to the Shapley
value. DeepSHAP is introduced in Section 2.4.

Different from the traditional image classification task, in our
case, the input of the network consists in both depth information
(image) and state information (scalar). Hence, our navigation net-
work consists of a Convolutional Neural Network (CNN) perception
part to deal with the image information and a Fully Connected
Network (FCN) part to fuse the image feature with state feature.
Because of this specific kind of network architecture, our expla-

L. He, N. Aouf and B. Song Aerospace Science and Technology 118 (2021) 107052

Fig. 4. Our proposed SHAP-CAM method. Different from CAM and Grad-CAM, SHAP values is used to provide better feature attribution of each features rather than gradients.
nation consists of visual explanation part for the image input and
text explanation part for the state features.

4.1. Visual explanation

In our problem, the obstacle information is provided by the
depth image. A CNN is used to extract the visual feature from the
raw depth image. Thus, CNN visualization is important for under-
standing the output of the learned policy.

To visualize the CNN perception of our network, a new method
named SHAP-CAM is proposed, which combining both CAM and
SHAP values as introduced in section 2.5. Similar to CAM method,
global average pooling (GAP) layer is reserved to summarize the
visual feature in the CNN perception network. The output of GAP
layer is defined as CNN feature. Different from CAM and Grad-CAM,
in our method, the SHAP value is used to determine the impor-
tance of the CNN feature rather than gradients. Our proposition is
supported by the fact that SHAP value has some unique proper-
ties comparing to the gradient, such as efficiency. Finally, a coarse
localization map highlighting the important regions in the image
is generated by a weighted sum of the last CNN activation map,
which is similar to Grad-CAM. The difference between CAM, Grad-
CAM and our method is shown in Fig. 4.

4.2. Texture explanation

In addition to the visual explanation, our network also takes
some UAV states as input. To get a reasonable explanation of the
model output, both image and state input should be considered. To
explain the state feature contribution, some texture explanations
are provided based on the SHAP values.

Our model has 3 continuous action outputs, horizontal speed
vcmd

xy , vertical speed vcmd
z and steering angular speed φcmd . To get

the textual action description, each action can be divided into 3
parts based on the reference action, as shown in Fig. 5. Assum-
ing that the reference action is the centre value of the action
6

Fig. 5. Action description. Each action is divided into 3 parts. While the prediction
fall into the central part, we say it is maintain the current state. Otherwise, there
will be a textual description of each action. The final description will be the combi-
nation of these three individual descriptions.

space, if the predicted action is similar to the reference action,
it is described to maintain current state. If the output action ei-
ther bigger or smaller than the reference action, a specific text
is used to describe the action, such as ‘slow down’ or ‘speed up’
for the horizontal speed vcmd

xy . The final textual output of the ac-
tion is the combination of these three action textual descriptions.
For example, the action can be described as ‘slow down, maintain
the altitude and turn right’. As for the explanation, all features are
sorted by its attribution to the action output. Then the two most
important features are selected to explain the model prediction.

Finally, with both visual and textual explanations, every out-
put of our network can be explained to illustrate the reason of
this decision. This kind of information is useful for non-expert to
well understand and trust the trained DRL network. Moreover, the
explanation only take one forward propagation, which can also
provide real-time explanations during flight.

5. Model explanation

In this section, the model trained in section 3 is explained using
the explanation method proposed in section 4. The visual explana-

L. He, N. Aouf and B. Song Aerospace Science and Technology 118 (2021) 107052

Fig. 6. Action explanation at 3 different time steps. (a) At t = 0, the action is slow down, keep altitude and turn right. Mainly because the big angle error to the goal position.
(b) At t = 53, the action is slow down, climb and turn right, mainly because the image features. From the heat map, we can see the quadrotor is close to the stone and the
CNN detected the edge of the stone. (c) At t = 89, the action is slow down, climb and turn left. This is also cause of the image feature.
tion part shows the attention of the CNN perception network and
the texture explanation part summaries the contribution of other
state features. In addition, activation map of the last CNN layer is
drawn to show the detailed visual feature extracted by the CNN
part. Finally, to help the expert to diagnose and improve the net-
work, some global explanations are also provided to analyse the
network based on the evaluation data gathered in 20 continuous
episodes.

5.1. Reference input

Baselines or references are essential to all explanations [53].
Feature attribution method has to generate the contribution of
each feature based on a reference input. Thus, the choice of the
reference input is critical for obtaining insightful results [46]. In
practice, choosing a good reference would rely on domain-specific
knowledge. For instance, in object recognition task, the reference
image can be a black image.

In our case, the depth image at the target flight height with-
out any obstacles is chosen as the reference image input. For state
input, we set the reference input as oref = [dxy = 70, dz = 0, ξ =
0, vxy = 0, vz = 0, φ = 0], which means the UAV only takes off
from the start point and has no velocity. The reference image is
7

shown in Fig. 17. Based on this reference input, we can get ref-
erence output from the trained network: vref

xy = 3.71m/s, vref
z =

−0.03m/s, φref = 4.15◦/s.

5.2. Local explanation

Local explanation can be generated for every time step. Three
specific time steps are chosen to demonstrate the visual and tex-
tual explanation in one of the model evaluation episodes. As
shown in Fig. 6, at t = 0, the action is ‘slow down, keep altitude
and turn right’. The explanation shows both ‘slow down’ and ‘turn
right’ action is caused by the ‘angular error to goal’. This is be-
cause the UAV at t = 0 does not face to the goal position, so the
UAV need to turn right. At t = 53, the action is ‘slow down, climb
and turn right’. The explanation shows this is mainly caused by
the ‘CNN feature’. From the heatmap generated using SHAP-CAM,
we can see the CNN detected left edge of the stone obstacle. At
t = 89, the action is ‘slow down, climb and turn left’. This is also
mainly caused by the ‘CNN feature’.

To find out the meaning of the CNN features, the last CNN layer
activation maps at both t = 53 and t = 89 are plotted as shown in
Fig. 7. From the activation map, we can see at t = 53, that CNN fea-

L. He, N. Aouf and B. Song Aerospace Science and Technology 118 (2021) 107052

Fig. 7. Last CNN layer activation map. From this map we can get the meaning of different CNN feature. For example, according to Fig. 6, at t = 53, the action 3 is turn right,
because CNN_4 and CNN_3 feature. Then, from Fig. 7 (a), CNN_3 and CNN_4 is the right edge of the stone.

Fig. 8. Depth image and the SHAP-CAM at 10 different time steps. The first line is the input depth image. The second to fourth lines are three SHAP-CAM activation maps for
three network outputs separately.

Fig. 9. State features in the evaluation episode. Blue line is the state feature and orange line is the reference state feature value. (For interpretation of the colours in the
figure(s), the reader is referred to the web version of this article.)
ture 8 is the left and right edges of the obstacle which contributes
the most to the slow down action. CNN feature 7 is the obstacle
and some ground which contributes to the climb. CNN feature 4
shows the right side edge of the obstacle with some free space
background, which leads to the turn right action.

5.3. Global explanation

In addition to the local explanation, some global explanations
are provided. First, one episode from the evaluation process is
selected and explained. Fig. 8 shows the depth image and the rel-
evant activation map for 3 actions at 10 different time steps. From
8

Fig. 8, at different time step, the network decision-making for dif-
ferent outputs relies on the different visual patterns. Moreover, the
control command and state features during the evaluation episode
is plotted in Fig. 9 and Fig. 10. From dxy in Fig. 9, the UAV flies to-
wards to the goal position and the distance to goal dxy is reducing
over the trajectory. Finally, at t = 160, the UAV reached the goal
position.

Then, all the feature attributions are summarized over 20 tra-
jectories, 2858 time steps in total. Fig. 11 shows the SHAP sum-
mary plot that orders the features based on their importance to
the different actions. From the left plot in Fig. 11, the CNN feature

L. He, N. Aouf and B. Song Aerospace Science and Technology 118 (2021) 107052

Fig. 10. Network outputs in the evaluation episode. Blue line is the action and orange line is the reference action.

Fig. 11. Feature analysis over 20 trajectories for 3 actions, forward speed vcmd
xy (left), vertical speed vcmd

z (middle) and steering speed φcmd (right). For each action, all the
features are sorted according to their average attribution. For vcmd

xy , the CNN_8 and CNN_2 feature contribute most, then the current forward speed v_xy. For vcmd
z , the

distance to goal contributes most. For φcmd, the angle error to goal is the most important feature.
contributes most to action a1 : vcmd
xy . Except for the CNN features,

the current horizontal velocity vxy and distance to goal dxy are
the most important features contributing to a1 : vcmd

xy . dxy , vxy and
vz contribute more to a2 : vcmd

z , the vertical velocity command.
The angle error ξ is the most important feature contributing to
a3 : φcmd.

6. Real world flight test

To validate the performance of our reactive navigation con-
troller, some real world outdoor experiments are carried out.
Specifically, to reduce the gap between real and simulation, the
DNN model is retrained in the PX4 Simulation In The Loop (SITL)
environment, which uses the same flight control stack as the real
flight platform.

6.1. Flight platform

A self-assembled quadrotor platform is used to evaluate the
trained navigation network, as shown in Fig. 12. The platform is
built based on S500 quadrotor framework, equipped with a Pix-
hawk flight controller. The flight controller can provide low-level
attitude and velocity control, as well as the position and velocity
information. An Intel RealSense D435i camera is mounted facing
forward in front of the quadrotor to get obstacle information. The
on-board computer is a NVIDIA Jetson Nano. It is used to run the
developed deep neural RL network and generate the velocity con-
trol signals. The velocity control signal is sent at 10 Hz to the flight
controller as velocity setpoint via serial port.

6.2. Model retraining

Because the flight controller used in AirSim training environ-
ment is different from the real platform and to reduce the gap
between the simulation and real data, the network is retrained in a
custom Gazebo environment. In this Gazebo environment, the con-
troller is running in the PX4 Simulation in the Loop (SITL) config-
9

Fig. 12. Self-assembled quadrotor platform used for real flight test.

Fig. 13. Gazebo environment for model retraining.

uration, which uses the same flight controller as the real platform
[54]. Some trees are placed on the ground as obstacles, as shown
in Fig. 13. In addition, to simplify the experiment, the problem

L. He, N. Aouf and B. Song Aerospace Science and Technology 118 (2021) 107052

Fig. 14. Training result in gazebo simulation environment. The model is trained from scratch for 20k time steps.

Fig. 15. Evaluation result in the training environment.
is limited to a 2D navigation problem as the flight height of the
quadrotor is fixed to 5 m. The controller outputs are the setpoints
of forward velocity and steering velocity. To keep the quadrotor
safe, the maximum forward velocity is limited to 1 m/s. The net-
work is trained in simulation for 20k time steps. Training results
are shown in Fig. 14. The success rate is about 95% after training.

6.3. Evaluation in simulation

After training, the trained model is evaluated in the training
environment firstly. As shown in Fig. 15 (a), the trained model is
evaluated for 50 episodes. At the beginning of each episode, the
quadrotor takes off from the origin point and flies to the goal po-
sition which is distributed on the circle with radius of 50 meters.
In 50 evaluation episodes, the UAV reaches goal position for 46
episodes, which is 92% success rate. The crash point is noted by
red cross. To demonstrate the state during evaluation, one of the
trajectories is selected to do some detailed analysis. The selected
trajectory is highlighted in red as shown in Fig. 15a. From the
flight path, the quadrotor made an obvious evasive maneuvering
to steer away from the obstacle. The forward speed and steering
speed of the quadrotor are shown in Fig. 15 (b). When the UAV
facing the obstacle at time step 75, our network reduced the speed
and turned right to avoid this obstacle.

6.4. Evaluation in the real world

After evaluation in simulation, the trained DRL network is di-
rectly deployed to the real flight platform without modification.
The real world test environment is shown in Fig. 16a. A large tree
is proposed as obstacle. The goal position is set behind the tree
10
and 35 meters away from the start point. Five real tests were con-
ducted at this environment from two different start position and
four of them were success. One of the flight paths is shown in
Fig. 16b. From the flight path, the trained reactive controller can
navigate the quadrotor to avoid the obstacle and reach the goal
position finally.

The proposed explanation method is also evaluated in the real
environment. The reference image is shown in Fig. 17. Actions pre-
dicted at t = 10 s, t = 11 s and t = 12 s are selected separately. As
shown in Fig. 19, the forward speed setpoint for all actions is 1m/s
which is same as the reference input. So, only the steering speed
is explained. As shown in Fig. 19 (a), at t = 10 s, the network out-
put is ‘turn left’. The explanation is that it is mainly because of
the ‘CNN features’. From the heatmap, we can find that the CNN
part detected the edge of the tree. In the next state, at t = 11 s, as
shown in Fig. 19 (b), the UAV has turned a little bit left from the
depth image comparing to t = 10 s, the output for steering veloc-
ity decrease from −23.3 deg/s to −10.2 deg/s. This is also mainly
caused by the ‘CNN feature’. At t = 12 s, the obstacle totally move
out from the field of view as shown in Fig. 19 (c), the actions be-
comes ‘turn right’. The explanation is that this is mainly caused by
the ‘angle error’ to goal position. The network cannot detect the
obstacle from the depth image, thus, the network wants to control
the quadrotor to face to the goal position.

Fig. 18 shows the forward speed and steering speed during
flight. From the experiment, as we expected, some little non-
smooth output appears when avoiding the obstacles. This is due
to the very challenging problem we are tackling in this paper. The
DRL network is trained in the simulation environment only and ap-
plied directly to real world conditions. Another reason is the nature
of reactive flight with limited camera field of View (FoV). When

L. He, N. Aouf and B. Song Aerospace Science and Technology 118 (2021) 107052

Fig. 16. Real world flight test.

Fig. 17. Reference depth image. In our case, the depth image at the target flight height without any obstacles is chosen as the reference image input.
the obstacle disappeared from the FoV, the network will control
the quadrotor to face the target direction again. Our developed DRL
controller was able to face these challenges and offered a unique
solution as the non-smooth output of the network is within toler-
ance and the quadrotor successfully navigated to the goal position.
From the evaluation result shown in Fig. 15b, such non-smooth
output also exists in the simulation, but the amplitude is signifi-
cantly smaller in the simulation than the real world test. Although
the real environment is different from the training environment,
the trained network still works, which shows our neural network
based reactive controller has some ability to be applied in different
environments.

In addition, the proposed reactive controller is compared with
a traditional obstacle avoidance algorithm. PX4 avoidance project
[55] is chosen as the opponent controller. PX4 avoidance project
provides ROS nodes for depth sensor fusion and obstacle avoid-
ance, which is based on the 3DVFH+. The local planner of PX4
avoidance can generate waypoint in a vector field histogram in-
cluding some history information. Flight test result shows that
both algorithms can navigate the quadrotor to the final position.
However, using the same hardware, the PX4 avoidance system can
only run at 10 Hz. In contrast, our deep neural network-based
reactive controller can run at 60 Hz. This shows the computa-
tional advantage of our reactive controller and it is very impor-
tant for lightweight UAVs with limited on-board computation re-
sources.
11
Fig. 18. Forward speed (up) and steering speed (down) during the real flight test.

7. Conclusion

In this paper, the UAV autonomous path planning problem is
addressed with DRL technique. Different from other works, the
proposed deep network trained in simulation only is evaluated in
both simulation and real world environment. Moreover, this paper
focused on proposing a new DRL scheme for model explainabil-

L. He, N. Aouf and B. Song Aerospace Science and Technology 118 (2021) 107052

Fig. 19. Real world action explanation at 3 different time steps. (a) At t = 10 s, the first action is keep speed, because the reference speed and network output for forward
speed are both 1 m/s. The steering velocity speed is −23.3 deg/s, which means turn left quickly. This action is generated because of C N N6 and C N N1 feature. (b) At t = 11 s,
the UAV already turned left, the steering output reduced from −23.3 to −10.2 deg/s. (c) At t = 12 s, the obstacle went out of the camera view. The action becomes turn
right. This is mainly caused of angle error to goal and C N N4 feature.
ity rather than treating the trained model as a black box. A new
saliency map generation method is proposed which combines both
CAM and SHAP values. Both visual and textual action explanations
can be generated for non-expert users. This is important for the
user to get more trust on the application of DRL-based model in
the real world environments.

In the future, the model will be fine-trained and improved
based on the explanation. Feature attribution method can provide
some explanation of the deep neural network, however, it is still
pretty shallow. We will look at other methods to make better ex-
planations for the trained network.

Declaration of competing interest

The authors declare the following financial interests/personal
relationships which may be considered as potential competing in-
terests:

Lei He reports financial support was provided by China Scholar-
ship Council No. 201806290175 and Key R & D project of Shaanxi
Province under Grant 2020ZDLGY06-05, 2021ZDLGY09-10.
12
References

[1] Y. Liu, H. Liu, Y. Tian, C. Sun, Reinforcement learning based two-level control
framework of UAV swarm for cooperative persistent surveillance in an un-
known urban area, Aerosp. Sci. Technol. 98 (2020) 105671.

[2] W.-C. Chiang, Y. Li, J. Shang, T.L. Urban, Impact of drone delivery on sustainabil-
ity and cost: realizing the UAV potential through vehicle routing optimization,
Appl. Energy 242 (2019) 1164–1175.

[3] T.F. Villa, F. Gonzalez, B. Miljievic, Z.D. Ristovski, L. Morawska, An overview of
small unmanned aerial vehicles for air quality measurements: present applica-
tions and future prospectives, Sensors 16 (7) (2016) 1072.

[4] I. Jawhar, N. Mohamed, J. Al-Jaroodi, D.P. Agrawal, S. Zhang, Communication
and networking of UAV-based systems: classification and associated architec-
tures, J. Netw. Comput. Appl. 84 (2017) 93–108.

[5] J. Park, H. Baek, Stereo vision based obstacle collision avoidance for a quadrotor
using ellipsoidal bounding box and hierarchical clustering, Aerosp. Sci. Technol.
103 (2020) 105882.

[6] S. Liu, M. Watterson, K. Mohta, K. Sun, S. Bhattacharya, C.J. Taylor, V. Kumar,
Planning dynamically feasible trajectories for quadrotors using safe flight cor-
ridors in 3-d complex environments, IEEE Robot. Autom. Lett. 2 (3) (2017)
1688–1695.

[7] B. Zhou, F. Gao, L. Wang, C. Liu, S. Shen, Robust and efficient quadrotor tra-
jectory generation for fast autonomous flight, IEEE Robot. Autom. Lett. 4 (4)
(2019) 3529–3536.

http://refhub.elsevier.com/S1270-9638(21)00562-9/bibFFFA77DB84458A2E3D2F564C5C629C84s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bibFFFA77DB84458A2E3D2F564C5C629C84s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bibFFFA77DB84458A2E3D2F564C5C629C84s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib80451BD4C0C8ACC8C58D36A7E098BFB3s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib80451BD4C0C8ACC8C58D36A7E098BFB3s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib80451BD4C0C8ACC8C58D36A7E098BFB3s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib0D41C463AF5F52F0C6FF96E725A9F96Cs1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib0D41C463AF5F52F0C6FF96E725A9F96Cs1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib0D41C463AF5F52F0C6FF96E725A9F96Cs1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bibAD11DD5B030A749AFB00A1043E50361Bs1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bibAD11DD5B030A749AFB00A1043E50361Bs1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bibAD11DD5B030A749AFB00A1043E50361Bs1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib00C60397A5DD0CD71D2DE9698CD56C96s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib00C60397A5DD0CD71D2DE9698CD56C96s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib00C60397A5DD0CD71D2DE9698CD56C96s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib5EAC194DE5BF2292A78D5C40CE4DD690s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib5EAC194DE5BF2292A78D5C40CE4DD690s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib5EAC194DE5BF2292A78D5C40CE4DD690s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib5EAC194DE5BF2292A78D5C40CE4DD690s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib8714D02144B4EB940038841508FA1FC2s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib8714D02144B4EB940038841508FA1FC2s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib8714D02144B4EB940038841508FA1FC2s1

L. He, N. Aouf and B. Song Aerospace Science and Technology 118 (2021) 107052
[8] Y. Song, L.-T. Hsu, Tightly coupled integrated navigation system via factor graph
for UAV indoor localization, Aerosp. Sci. Technol. 108 (2021) 106370.

[9] M. Shah, N. Aouf, 3D cooperative Pythagorean hodograph path planning and
obstacle avoidance for multiple UAVs, in: 2010 IEEE 9th International Confer-
ence on Cybernetic Intelligent Systems, IEEE, 2010, pp. 1–6.

[10] Y. Shin, E. Kim, Hybrid path planning using positioning risk and artificial po-
tential fields, Aerosp. Sci. Technol. (2021) 106640.

[11] S. Paschall, J. Rose, Fast, lightweight autonomy through an unknown cluttered
environment: distribution statement: a—approved for public release; distribu-
tion unlimited, in: 2017 IEEE Aerospace Conference, IEEE, 2017, pp. 1–8.

[12] H.D. Escobar-Alvarez, N. Johnson, T. Hebble, K. Klingebiel, S.A. Quintero, J. Re-
genstein, N.A. Browning, R-advance: rapid adaptive prediction for vision-based
autonomous navigation, control, and evasion, J. Field Robot. 35 (1) (2018)
91–100.

[13] N. Imanberdiyev, C. Fu, E. Kayacan, I.-M. Chen, Autonomous navigation of UAV
by using real-time model-based reinforcement learning, in: 2016 14th Interna-
tional Conference on Control, Automation, Robotics and Vision (ICARCV), IEEE,
2016, pp. 1–6.

[14] L. He, N. Aouf, J.F. Whidborne, B. Song, Integrated moment-based LGMD
and deep reinforcement learning for UAV obstacle avoidance, in: 2020 IEEE
International Conference on Robotics and Automation (ICRA), IEEE, 2020,
pp. 7491–7497.

[15] L. He, N. Aouf, J.F. Whidborne, B. Song, Deep reinforcement learning based local
planner for UAV obstacle avoidance using demonstration data, preprint, arXiv:
2008 .02521, 2020.

[16] C. Wang, J. Wang, Y. Shen, X. Zhang, Autonomous navigation of UAVs in large-
scale complex environments: a deep reinforcement learning approach, IEEE
Trans. Veh. Technol. 68 (3) (2019) 2124–2136.

[17] C. Wang, J. Wang, J. Wang, X. Zhang, Deep reinforcement learning-based au-
tonomous UAV navigation with sparse rewards, IEEE Int. Things J. (2020).

[18] S. Ross, N. Melik-Barkhudarov, K.S. Shankar, A. Wendel, D. Dey, J.A. Bagnell,
M. Hebert, Learning monocular reactive UAV control in cluttered natural envi-
ronments, in: 2013 IEEE International Conference on Robotics and Automation,
IEEE, 2013, pp. 1765–1772.

[19] D. Xu, Z. Hui, Y. Liu, G. Chen, Morphing control of a new bionic morphing UAV
with deep reinforcement learning, Aerosp. Sci. Technol. 92 (2019) 232–243.

[20] X. Zhao, Q. Zong, B. Tian, B. Zhang, M. You, Fast task allocation for heteroge-
neous unmanned aerial vehicles through reinforcement learning, Aerosp. Sci.
Technol. 92 (2019) 588–594.

[21] V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G. Bellemare, A.
Graves, M. Riedmiller, A.K. Fidjeland, G. Ostrovski, et al., Human-level control
through deep reinforcement learning, Nature 518 (7540) (2015) 529–533.

[22] M. Moravčík, M. Schmid, N. Burch, V. Lisỳ, D. Morrill, N. Bard, T. Davis, K.
Waugh, M. Johanson, M. Bowling, Deepstack: expert-level artificial intelligence
in heads-up no-limit poker, Science 356 (6337) (2017) 508–513.

[23] M. Kordestani, A.A. Safavi, M. Saif, Recent survey of large-scale systems: archi-
tectures, controller strategies, and industrial applications, IEEE Syst. J. (2021).

[24] A.B. Arrieta, N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik, A. Barbado,
S. García, S. Gil-López, D. Molina, R. Benjamins, et al., Explainable artificial
intelligence (XAI): concepts, taxonomies, opportunities and challenges toward
responsible AI, Inf. Fusion 58 (2020) 82–115.

[25] L. Longo, R. Goebel, F. Lecue, P. Kieseberg, A. Holzinger, Explainable artificial
intelligence: concepts, applications, research challenges and visions, in: Inter-
national Cross-Domain Conference for Machine Learning and Knowledge Ex-
traction, Springer, 2020, pp. 1–16.

[26] C. Belloni, N. Aouf, A. Balleri, J.-M. Le Caillec, T. Merlet, Explainability of deep
SAR atr through feature analysis, IEEE Trans. Aerosp. Electron. Syst. (2020).

[27] A. Heuillet, F. Couthouis, N.D. Rodríguez, Explainability in deep reinforcement
learning, preprint, arXiv:2008 .06693, 2020.

[28] Z. Juozapaitis, A. Koul, A. Fern, M. Erwig, F. Doshi-Velez, Explainable reinforce-
ment learning via reward decomposition, in: IJCAI/ECAI Workshop on Explain-
able Artificial Intelligence, 2019.

[29] R. Pocius, L. Neal, A. Fern, Strategic tasks for explainable reinforcement learn-
ing, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
2019, pp. 10007–10008.

[30] J.H. Lee, Complementary reinforcement learning towards explainable agents,
preprint, arXiv:1901.00188, 2019.

[31] B. Beyret, A. Shafti, A.A. Faisal, Dot-to-dot: explainable hierarchical reinforce-
ment learning for robotic manipulation, preprint, arXiv:1904 .06703, 2019.

[32] P. Madumal, T. Miller, L. Sonenberg, F. Vetere, Explainable reinforcement learn-
ing through a causal lens, preprint, arXiv:1905 .10958, 2019.

[33] O. Walker, F. Vanegas, F. Gonzalez, S. Koenig, A deep reinforcement learning
framework for UAV navigation in indoor environments, in: 2019 IEEE Aerospace
Conference, IEEE, 2019, pp. 1–14.

[34] V.J. Hodge, R. Hawkins, R. Alexander, Deep reinforcement learning for drone
navigation using sensor data, Neural Comput. Appl. (2020) 1–19.

[35] B.G. Maciel-Pearson, L. Marchegiani, S. Akcay, A. Atapour-Abarghouei, J. Gar-
forth, T.P. Breckon, Online deep reinforcement learning for autonomous UAV
navigation and exploration of outdoor environments, preprint, arXiv:1912 .
05684, 2019.

[36] G. Tong, N. Jiang, L. Biyue, Z. Xi, W. Ya, D. Wenbo, Uav navigation in high
dynamic environments: a deep reinforcement learning approach, Chin. J. Aero-
naut. (2020).

[37] C. Yan, X. Xiang, C. Wang, Towards real-time path planning through deep re-
inforcement learning for a UAV in dynamic environments, J. Intell. Robot. Syst.
(2019) 1–13.

[38] S. Fujimoto, H. Van Hoof, D. Meger, Addressing function approximation error in
actor-critic methods, preprint, arXiv:1802 .09477, 2018.

[39] T.P. Lillicrap, J.J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, D. Wier-
stra, Continuous control with deep reinforcement learning, preprint, arXiv:
1509 .02971, 2015.

[40] J. Achiam, Spinning up in deep reinforcement learning, 2018.
[41] A.E. Roth, The Shapley Value: Essays in Honor of Lloyd S. Shapley, Cambridge

University Press, 1988.
[42] A. Shrikumar, P. Greenside, A. Shcherbina, A. Kundaje, Not just a black

box: learning important features through propagating activation differences,
preprint, arXiv:1605 .01713, 2016.

[43] M. Sundararajan, A. Taly, Q. Yan, Axiomatic attribution for deep networks,
preprint, arXiv:1703 .01365, 2017.

[44] S.M. Lundberg, S.-I. Lee, A unified approach to interpreting model predictions,
in: Advances in Neural Information Processing Systems, 2017, pp. 4765–4774.

[45] H. Chen, S. Lundberg, S.-I. Lee, Explaining models by propagating Shapley val-
ues of local components, preprint, arXiv:1911.11888, 2019.

[46] A. Shrikumar, P. Greenside, A. Kundaje, Learning important features through
propagating activation differences, preprint, arXiv:1704 .02685, 2017.

[47] M.D. Zeiler, R. Fergus, Visualizing and understanding convolutional networks,
in: European Conference on Computer Vision, Springer, 2014, pp. 818–833.

[48] K. Simonyan, A. Vedaldi, A. Zisserman, Deep inside convolutional networks:
visualising image classification models and saliency maps, preprint, arXiv:1312 .
6034, 2013.

[49] J.T. Springenberg, A. Dosovitskiy, T. Brox, M. Riedmiller, Striving for simplicity:
the all convolutional net, preprint, arXiv:1412 .6806, 2014.

[50] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, A. Torralba, Learning deep features for
discriminative localization, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

[51] R.R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra, Grad-
cam: visual explanations from deep networks via gradient-based localization,
in: Proceedings of the IEEE International Conference on Computer Vision, 2017,
pp. 618–626.

[52] S. Shah, D. Dey, C. Lovett, A. Kapoor, Airsim: high-fidelity visual and physical
simulation for autonomous vehicles, in: Field and Service Robotics, 2017.

[53] D. Kahneman, D.T. Miller, Norm theory: comparing reality to its alternatives,
Psychol. Rev. 93 (2) (1986) 136.

[54] Px4-autopilot, https://github .com /PX4 /PX4 -Autopilot, 2021.
[55] Px4-avoidance, https://github .com /PX4 /PX4 -Avoidance, 2021.
13

http://refhub.elsevier.com/S1270-9638(21)00562-9/bibDF9DDA17E6B6177A324BD621AEB42438s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bibDF9DDA17E6B6177A324BD621AEB42438s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib307E4ADD9C1831249E5C912630CC7435s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib307E4ADD9C1831249E5C912630CC7435s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib307E4ADD9C1831249E5C912630CC7435s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib0516BCA861A3E215C0BC3C39A76257AFs1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib0516BCA861A3E215C0BC3C39A76257AFs1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bibA93CE3243D457CF9595085147775BF77s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bibA93CE3243D457CF9595085147775BF77s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bibA93CE3243D457CF9595085147775BF77s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bibEABC7F3FCDA386863BAEACB7A4763DA1s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bibEABC7F3FCDA386863BAEACB7A4763DA1s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bibEABC7F3FCDA386863BAEACB7A4763DA1s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bibEABC7F3FCDA386863BAEACB7A4763DA1s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib025378712FEF64C4E71A73BDAAFEFBF8s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib025378712FEF64C4E71A73BDAAFEFBF8s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib025378712FEF64C4E71A73BDAAFEFBF8s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib025378712FEF64C4E71A73BDAAFEFBF8s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bibA53DE8117ED6797587624AADF235C664s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bibA53DE8117ED6797587624AADF235C664s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bibA53DE8117ED6797587624AADF235C664s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bibA53DE8117ED6797587624AADF235C664s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib7C7A591D791F4FDECDC2A77EBB8B3B63s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib7C7A591D791F4FDECDC2A77EBB8B3B63s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib7C7A591D791F4FDECDC2A77EBB8B3B63s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib8355E5D32B7F3EBB1A8512E23C99BD63s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib8355E5D32B7F3EBB1A8512E23C99BD63s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib8355E5D32B7F3EBB1A8512E23C99BD63s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib94451DFE349488D36831A129F3E3E038s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib94451DFE349488D36831A129F3E3E038s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib0E4CE92EE6256013F3EC606210A31441s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib0E4CE92EE6256013F3EC606210A31441s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib0E4CE92EE6256013F3EC606210A31441s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib0E4CE92EE6256013F3EC606210A31441s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bibD3C38245A9A6C8C34C56E7235F5A68EBs1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bibD3C38245A9A6C8C34C56E7235F5A68EBs1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bibFCD30FB5B3154800237AB6128F31323Bs1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bibFCD30FB5B3154800237AB6128F31323Bs1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bibFCD30FB5B3154800237AB6128F31323Bs1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib84824326C621334EF64ACFB56EB46EFBs1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib84824326C621334EF64ACFB56EB46EFBs1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib84824326C621334EF64ACFB56EB46EFBs1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib2501DBDB6606FB6D2FB9CF2322818899s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib2501DBDB6606FB6D2FB9CF2322818899s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib2501DBDB6606FB6D2FB9CF2322818899s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib1933297A16AAB3862637AC247A3ED890s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib1933297A16AAB3862637AC247A3ED890s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bibD688FDB838012F09CA55D128542E463As1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bibD688FDB838012F09CA55D128542E463As1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bibD688FDB838012F09CA55D128542E463As1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bibD688FDB838012F09CA55D128542E463As1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bibBB8B7E7FED8192831D6E4A38EFCA26F6s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bibBB8B7E7FED8192831D6E4A38EFCA26F6s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bibBB8B7E7FED8192831D6E4A38EFCA26F6s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bibBB8B7E7FED8192831D6E4A38EFCA26F6s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib3FBEC02CCBEB42CE662D41E9E19B41CCs1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib3FBEC02CCBEB42CE662D41E9E19B41CCs1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bibD51E38791BE0AE0EA7DB86EBAD0F6E9Cs1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bibD51E38791BE0AE0EA7DB86EBAD0F6E9Cs1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bibC4B799FE9398E2FBAEA2901897C7B30Es1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bibC4B799FE9398E2FBAEA2901897C7B30Es1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bibC4B799FE9398E2FBAEA2901897C7B30Es1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib140B7533727960D7DC90815FD8F3B040s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib140B7533727960D7DC90815FD8F3B040s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib140B7533727960D7DC90815FD8F3B040s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bibF318C0BD6B83D6DAB49F0A7D83B3F547s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bibF318C0BD6B83D6DAB49F0A7D83B3F547s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib7A1ECE093FE642EFC6FEC8420F7F76CDs1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib7A1ECE093FE642EFC6FEC8420F7F76CDs1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib0514A50849742A7DE7B3044222A57D19s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib0514A50849742A7DE7B3044222A57D19s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bibAC49E48B80935E99CE1776EC790F577Fs1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bibAC49E48B80935E99CE1776EC790F577Fs1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bibAC49E48B80935E99CE1776EC790F577Fs1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib66AF3DD8689BA979288867CA36CD6A28s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib66AF3DD8689BA979288867CA36CD6A28s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib7D66AD15A63158D774328C6F54506148s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib7D66AD15A63158D774328C6F54506148s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib7D66AD15A63158D774328C6F54506148s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib7D66AD15A63158D774328C6F54506148s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib41FEBC67B0D723B34A0D3FAF5A3E1DDEs1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib41FEBC67B0D723B34A0D3FAF5A3E1DDEs1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib41FEBC67B0D723B34A0D3FAF5A3E1DDEs1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bibAA516DD03371072F95A047C48626E3ADs1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bibAA516DD03371072F95A047C48626E3ADs1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bibAA516DD03371072F95A047C48626E3ADs1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib5D621920178BEA4E1DC97C14C0AC1A98s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib5D621920178BEA4E1DC97C14C0AC1A98s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib3412A032C352E65C0AB1AA5CF1F3C706s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib3412A032C352E65C0AB1AA5CF1F3C706s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib3412A032C352E65C0AB1AA5CF1F3C706s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib9F0C85434577B5C5DF224EEEB52B8534s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib9F0C85434577B5C5DF224EEEB52B8534s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib308EABC258778035EDDFDE21DA4BC45Fs1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib308EABC258778035EDDFDE21DA4BC45Fs1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib308EABC258778035EDDFDE21DA4BC45Fs1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib74A67B95117264A919A9E3304B8363D1s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib74A67B95117264A919A9E3304B8363D1s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib4F3CC052382D7A93F8E8BE02E7F84F67s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib4F3CC052382D7A93F8E8BE02E7F84F67s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib6CEC58B431F399B0EFB1422CBE421046s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib6CEC58B431F399B0EFB1422CBE421046s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib52477CA16A6AEADFA20F4ED2DC76B058s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib52477CA16A6AEADFA20F4ED2DC76B058s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib282A7F752ECEF742C6A7EC43ABC25509s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib282A7F752ECEF742C6A7EC43ABC25509s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib80994D63F5D26DCB96971B53B176EE4Cs1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib80994D63F5D26DCB96971B53B176EE4Cs1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib80994D63F5D26DCB96971B53B176EE4Cs1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bibEAFE2821B16FC866B9562C9F6B9C9958s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bibEAFE2821B16FC866B9562C9F6B9C9958s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bibBD0EC1C5F277432FAB939F55187D129Ds1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bibBD0EC1C5F277432FAB939F55187D129Ds1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bibBD0EC1C5F277432FAB939F55187D129Ds1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bibB01D08C94FB6C17BF2AE85470DB86527s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bibB01D08C94FB6C17BF2AE85470DB86527s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bibB01D08C94FB6C17BF2AE85470DB86527s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bibB01D08C94FB6C17BF2AE85470DB86527s1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib458FB1C52352DA20A63AFA891C76DBBCs1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib458FB1C52352DA20A63AFA891C76DBBCs1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib7A41A06C2D0B6E38ED93F3DAF63E061Cs1
http://refhub.elsevier.com/S1270-9638(21)00562-9/bib7A41A06C2D0B6E38ED93F3DAF63E061Cs1
https://github.com/PX4/PX4-Autopilot
https://github.com/PX4/PX4-Avoidance

	Explainable Deep Reinforcement Learning for UAV autonomous path planning
	1 Introduction
	2 Preliminaries
	2.1 MDP and DRL
	2.2 TD3 algorithm
	2.3 Feature attribution
	2.4 SHAP and DeepSHAP
	2.5 CNN visualization

	3 DRL-based UAV navigation
	3.1 Problem formulation
	3.2 Training environment and setting
	3.3 Reward function design
	3.4 Training result

	4 Post-hoc explanation method
	4.1 Visual explanation
	4.2 Texture explanation

	5 Model explanation
	5.1 Reference input
	5.2 Local explanation
	5.3 Global explanation

	6 Real world flight test
	6.1 Flight platform
	6.2 Model retraining
	6.3 Evaluation in simulation
	6.4 Evaluation in the real world

	7 Conclusion
	Declaration of competing interest
	References

