Lei He

+(65) 8942 9263 | lei.he@nus.edu.sg | Google Scholar | Github

Research Interest

- UAV autonomous navigation and control
- Deep Reinforcement Learning for Robotics
- Explainable AI for robotics applications
- Bio-inspired Computer Vision

EDUCATION

School of Aeronautics, Northwestern Polytechnical University	Xi'an, China
Ph.D. in Aircraft Design	$Aug \ 2015 - Dec \ 2023$
• Direct Ph.D. project without master degree	
• Supervisor: Prof. <u>Bifeng Song</u> (The Changjiang Scholars Program award)	
• Ph.D. Thesis: Autonomous Obstacle Avoidance Flight of Bird-like Flapping Wing Deep Reinforcement Learning	g Micro Aerial Vehicle based o
* Developed a deep reinforcement learning framework for flapping-wing UAV obs	tacle avoidance.
* Designed a bio-inspired monocular vision system.	
\ast Validated in real-world flight experiments, achieved 10 m/s flight speed.	
Center for Aeronautics, Cranfield University	Bedford, UK
Visiting Ph.D. student	Feb 2019 - Dec 2020
• Supervisor: Prof. Nabil Aouf and Prof. James Whidborne	
• Research area: UAV autonomous flight using deep reinforcement learning	
• Supported by China Scholarship Council (CSC)	
Honors College, Northwestern Polytechnical University	Xi'an, China
B.E. in Aircraft Design and Engineering	$Aug \ 2011 - Jun \ 2018$
• Overall GPA $86/100$, ranking 20^{th} of 76	
• Awarded Direct Admission to Ph.D. Program	
Experience	
Research Fellow	Jan 2024 – Present
National University of Singapore	Singapor
• Designed and implemented an adaptive whole-body control framework for aerial ma	nipulation.
· Developed a real time MPC based trajectory traditing algorithm	

- Developed a real-time MPC-based trajectory tracking algorithm.
- Conducted flight experiments on a customized aerial manipulator.
- Supervised by Assistant Prof. Lin Zhao

Research Assistant (Part-time)

City, University of London

- Conducted research on Orbital AI-based Autonomous Refuelling (OIBAR) project, supported by European Space Agency (ESA).
- Designed a 3D monocular pose estimation algorithm for spacecraft docking using deep learning.
- Finished simulation for autonomous docking using a robotic arm and our docking mechanism.
- Supervised by Prof. Nabil Aouf

Assistant Flight Control Engineer (Part-time)

Sanyi UAS Co. Ltd

- Working on flight control system design for various novel UAV concepts.
- Performed system debugging and flight testing to validate performance in real-world conditions.

Aug 2016 – Dec 2018 Xi'an, China

Apr 2020 - Oct 2020

London, UK

Aerial Manipulator

Projects

- Investigated the integration of Model Predictive Control (MPC) and Adaptive Control for aerial manipulation.
- Designed and built a prototype, followed by initial flight tests.
- Implemented simulation software for system evaluation and algorithm verification.

Swarm UAV Flight in Cluttered Environment

- Conducted indoor and outdoor flight experiments for multi-agent coordination and collision avoidance.
- Contributed to the simulation and debugging of swarm algorithms.
- Developed a visualization software for the system.

Flapping Wing Autonomous Obstacle Avoidance Flight

- Developed an obstacle avoidance system for a bird-like flapping wing micro UAV.
- Using bio-inspired monocular vision for obstacle detection.
- Avoidance policy is trained in the simulation environment and deployed to real flapping wing UAV for flight test.
- Finished my PhD thesis based on this project.

Orbital AI-based Autonomous Refuelling

- Designed an AI-based 3D target position and pose estimation algorithm for autonomous docking.
- Developed a physical docking mechanism, creating prototypes using 3D printing and CNC machining.
- Simulated a microgravity environment using a robotic arm and successfully demonstrated autonomous docking.

UAV Autonomous Flight using Deep Reinforcement Learning

- Developed a simulation framework using AirSim to simulate UAV flight scenarios.
- Implemented deep reinforcement learning (DRL) algorithms for autonomous obstacle avoidance and navigation.
- Transferred the trained policy from simulation to a real quadrotor UAV and successfully conducted outdoor flight experiments.

VTOL Fixed-Wing UAV Design and Flight Test

- Designed and built various VTOL fixed-wing UAVs, including quadrotor VTOL, tail-sitter VTOL, and tilt-wing UAVs.
- Developed and customized flight control systems based on the PX4 open-source autopilot.
- Performed hardware integration, software tuning, and extensive flight testing to ensure stability and transition performance.

INTERNSHIPS

Undergraduate Research Student	Aug $2013 - Mar 2015$
Intelligent Car Lab, Northwestern Polytechnical University	Xi'an, China
• Automatic driving and tracking system for intelligent car using computer vision	
• Supported by China National Innovation Experiment Program for college students	
• Supervised by Prof. <u>Shiru Qu</u>	
Summer Research Intern	May 2014 – Aug 2014
Shaanxi Province Key Lab of Speech and Image Information Processing (SAIIP)	Xi'an, China
• Audio, speech and language processing using machine learning	
• Supervised by Prof. <u>Lei Xie</u>	
Exchange Student	Aug 2013 – Jan 2014
National Taiwan University of Science and Technology	Taipei
• Exchange student in Department of Computer Science and Information Engineering	
• Major in Computer Science and Software Engineering	

May 2021 – Dec 2023

Apr 2020 – Dec 2020

Feb 2019 – May 2021

Jan 2016 – Dec 2018

Aug 2024 – Present

Jan 2024 – Dec 2024

PUBLICATIONS

- 1. Lei He, Aouf Nabil, and Bifeng Song. Explainable Deep Reinforcement Learning for UAV Autonomous Navigation. *Aerospace science and technology*, 2021.
- 2. Lei He, Nabil Aouf, James Whidborne, Bifeng Song. Integrated moment-based LGMD and deep reinforcement learning for UAV obstacle avoidance. *IEEE International Conference on Robotics and Automation (ICRA)*, 2020.
- 3. Lei He, Duarte Rondao, Nabil Aouf. A Novel Mechanism for Orbital AI-based Autonomous Refueling. AIAA SCITECH Forum, 2023.
- 4. Lei He, Nabil Aouf, James Whidborne, Bifeng Song. Deep Reinforcement Learning based Local Planner for UAV Obstacle Avoidance using Demonstration Data. *preprint*, 2020.
- 5. Duarte Rondao, Lei He, Nabil Aouf. AI-based monocular pose estimation for autonomous space refuelling. Acta Astronautica, 2024
- 6. Changhao Chen, Bifeng Song, Shuhui Bu, Lei He. An improved point feature-based sparse stereo vision. IET Image Processing, 2020.
- 7. Shi Qian Liu, James F Whidborne, Lei He. Backstepping sliding-mode control of stratospheric airships using disturbance-observer. Advances in Space Research, 2021.
- Siqi Wang, Bifeng Song, Lei He, Xinyu Lang. Modeling and robust attitude controller design of a distributed propulsion tilt-wing UAV in hovering flight. *Chinese Control And Decision Conference* (CCDC), 2019
- Siqi Wang, Bifeng Song, Lei He. Robust attitude control system design for a distributed propulsion tilt-wing uav in flight state transition. Asia-Pacific International Symposium on Aerospace Technology, 2018
- Bifeng Song, Lei He, Chen Wang, Wenqing Yang, A multi power fusion flight control system applied to micro UAV. Chinese Patent (ZL 2015 1 0990837.X), 2015

TECHNICAL SKILLS

UAV control system design, simulation and real flight test

- Python, C++, MATLAB, Simulink
- PX4 open-source flight stack development
- ROS and Linux programming
- UAV operation for 8 years, including fixed-wing, flapping-wing, quadrotor and VTOL.

Learning-based control and planning

- TensorFlow, PyTorch
- Experienced in implementing deep reinforcement learning algorithms for UAV applications.
- Familiar with common UAV and robotics simulators, such as Gazebo, AirSim, and MuJoCo.

HOBBIES

Sports, aviation spot and photography

Referees

Prof. Bifeng Song School of Aeronautics Northwestern Polytechnical University Email: <u>sbf@nwpu.edu.cn</u> Phone: (+86) 186 9180 9317 Prof. Nabil Aouf School of Science and Technology City, University of London Email: <u>nabil.aouf@city.ac.uk</u> Phone: <u>+44 (0)20 7040 5168</u> Prof. James Whidborne Center for Aeronautics Cranfield University Email: j.f.whidborne@cranfield.ac.uk Phone: +44 (0) 1234 754787